机器学习笔记(二)

总结自 《机器学习》周志华

模型评估与选择
错误率=样本总数/分类错误的样本数
精度=1-错误率
误差:实际预测输出与样本真实输出之间的差异
训练误差:学习器在训练集上的误差
泛化误差:学习器在新样本上的误差
过拟合:学习能力过于强大,将训练样本本身的一些不太一般的特点当作所有潜在样本的特点导致算法泛化性能下降
欠拟合:学习能力过于弱小,还未将训练样本的一般特点学习到位
小心得:泛化误差在实际运用中不能直接获得,因此对于学习算法的选择以及参数配置的选择上无法依赖于泛化误差的评估,而训练误差由于有过拟合现象的出现(即使训练误差很小,泛化误差却可能很大)也不适合用来做模型评估

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

rodger_snow

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值