什么是二叉查找树:
根节点的值大于其左子树中任意一个节点的值,小于其右节点中任意一节点的值,这一规则适用于二叉查找树中的每一个节点。
本文章重点来讨论一下关于二叉查找树删除节点的问题。
有一下二叉查找树,如图:
在删除节点的时候我们只需考虑一下三种情况:
(1)要删除的节点是叶子结点,如图:
(2)要删除的节点有左节点但是没有右节点,或者有右节点但是没有左节点,如图:
(3)要删除的节点既有左节点又有右节点,在这种情况下,我们只需要将找到待删节点的右子树中值最小的节点,将其删除并且获取其值,并用其值替换待删节点的值即可。如图:
如上图所示,如果要删除节点7,则需寻找其右子树中节点值最小的9,并且该值一定位于该右子树的最左子节点;但是还有一种情况,如图一右子树没有左节点,但是只有右节点,这种情况就回到了前面的第二种情况。
具体代码如下:注意Node类是一个内部类,在使用时注意方法。
package com.zc.algorithm;
public class BinarySortTree {
public class Node{
int value;
Node left;
Node right;
public Node(int value)
{
this.value = value;
}
public void add(Node node)
{
if(node == null)
{
return;
}
//判断传入的节点的值比当前子树的根节点的值大还是小
if(node.value < this.value)
{
//如果左节点为空
if(this.left == null)
{
this.left = node;
}
else
{
this.left.add(node);
}
}
else
{
if(this.right == null)
{
this.right =node;
}
else
{
this.right.add(node);
}
}
}
/**
* 前序遍历二叉排序树
* @param node
*/
public void middleOder(Node node)
{
if(node == null)
{
return;
}
middleOder(node.left);
System.out.println(node.value);
middleOder(node.right);
}
/**
* 查找某一节点
* @param value
* @return
*/
public Node search(int value)
{
if(this.value == value)
{
return this;
}
else if(value < this.value)
{
if(this.left == null)
{
return null;
}
return this.left.search(value);
}
else
{
if(this.right == null)
{
return null;
}
return this.right.search(value);
}
}
public Node searchParent(int value) {
if((this.left != null && this.left.value == value) || (this.right != null && this.right.value == value))
{
return this;
}
else
{
if(this.value > value&& this.left != null)
{
return this.left.searchParent(value);
}
else if(this.value < value && this.right !=null)
{
return this.right.searchParent(value);
}
}
return null;
}
}
Node root;
/**
* 向二叉排序树中添加节点
* @param node
*/
public void add(Node node)
{
if(root == null)
{
root = node;
}
else
{
root.add(node);
}
}
public void frontShow()
{
if(root != null)
{
this.root.middleOder(root);
}
}
public Node SearchNode(int value)
{
if(root == null)
return null;
else
{
return root.search(value);
}
}
public void delete(int value) {
if (root == null)
return;
else
{
Node target = SearchNode(value);
//如果没有这个节点
if(target == null)
{
return;
}
//找到他的父节点
Node parent = searchParent(value);
//要删除的节点是叶子结点
if(target.left == null && target.right == null)
{
//要删除的节点是节点的左子节点
if(parent.left.value == value)
{
parent.left =null;
}
else
{
parent.right = null;
}
}
//要删除的节点有两个子节点的情况
else if(target.left != null && target.right != null)
{
//删除右子树中值最小的节点,并获取到该节点的值
int min = minDelete(target.right);
//替换目标节点中的值
target.value = min;
}
else
{
//需要删除的目标节点的左节点不为空
if(target.left != null)
{
//要删除的子节点是其父节点的左子节点,并且有左节点而没有有节点
if(parent.left.value == value)
{
parent.left = target.left;
}
//要删除的子节点是其父节点的右子节点,并且有左节点而没有有节点
else
{
parent.right = target.left;
}
}
//需要删除的目标节点的右节点不为空
else
{
//要删除的节点是父节点的左节点,并且有右节点儿没有左节点
if(parent.left.value == value)
{
parent.left = target.right;
}
//要删除的节点是其父节点的右节点,并且有右孩子没有左孩子
else
{
parent.right = target.right;
}
}
}
}
}
/**
* 删除一颗树中最小的节点
* @param node
* @return
*/
public int minDelete(Node node)
{
Node target = node;
while(target.left != null)
{
target = target.left;
}
delete(target.value);
return target.value;
}
/**
* 查找父节点
* @param value
* @return
*/
public Node searchParent(int value)
{
if(root == null)
{
return null;
}
else
{
return root.searchParent(value);
}
}
public static void main(String[] args)
{
int[] arr = new int[]{7,3,10,12,5,1,9};
BinarySortTree binTree = new BinarySortTree();
for(int i : arr)
{
binTree.add(binTree.new Node(i));
}
binTree.delete(7);
//查看树中的值
binTree.frontShow();
//查找
// Node node = binTree.new Node(3);
//Node res = binTree.SearchNode(node.value);
//System.out.println(res.value);
// Node temp = binTree.SearchNode(20);
//System.out.println(temp.value);
}
}