二叉搜索树

二叉搜索树

若它的左子树不为空,则左子树上所有节点的值都小于根节点的值。
若它的右子树不为空,则右子树上所有节点的值都大于根节点的值。
它的左右子树也分别为二叉搜索树。

int a [] = {5,3,4,1,7,8,2,6,0,9};在这里插入图片描述

二叉搜索树的查找

在这里插入图片描述

二叉搜索树的插入

a. 树为空,则直接插入

b. 树不空,按二叉搜索树性质查找插入位置,插入新节点
插入10
在这里插入图片描述
二叉搜索树的删除

首先查找元素是否在二叉搜索树中,如果不存在,则返回, 否则要删除的结点可能分下面四种情况:
a. 要删除的结点无孩子结点
b. 要删除的结点只有左孩子结点
c. 要删除的结点只有右孩子结点
d. 要删除的结点有左、右孩子结点

看起来有待删除节点有4中情况,实际情况a可以与情况b或者c合并起来,因此真正的删除过程如下:
情况b:删除该结点且使被删除节点的双亲结点指向被删除节点的左孩子结点

情况c:删除该结点且使被删除节点的双亲结点指向被删除结点的右孩子结点

情况d:在它的右子树中寻找中序下的第一个结点(关键码最小),用它的值填补到被删除节点中,再来处理该结点的删除问题

二叉搜索树的性能分析

插入和删除操作都必须先查找,查找效率代表了二叉搜索树中各个操作的性能
在这里插入图片描述
最优情况下,二叉搜索树为完全二叉树,其平均比较次数为:logN
最差情况下,二叉搜索树退化为单支树,其平均比较次数为:N/2

©️2020 CSDN 皮肤主题: 数字20 设计师:CSDN官方博客 返回首页