斐波那契数列是一个非常常规的数列,fn=f(n-1)+f(n-2),也经常被人成为数字数列。不过本题比斐波那契数列多了一步,即将计算结果mod m
广义斐波那契数列
题目描述
广义的斐波那契数列是指形如 an=p×an−1+q×an−2a_n=p\times a_{n-1}+q\times a_{n-2}an=p×an−1+q×an−2 的数列。
今给定数列的两系数 ppp 和 qqq,以及数列的最前两项 a1a_1a1 和 $ a_2$,另给出两个整数 nnn 和 mmm,试求数列的第 nnn 项 ana_nan 对 mmm 取模后的结果。
输入格式
输入包含一行六个整数,p,q,a1,a2,n,mp,q,a_1,a_2,n,mp,q,a1,a2,n,m。
输出格式
输出包含一行一个整数表示答案。
样例 #1
样例输入 #1
1 1 1 1 10 7
样例输出 #1
6
提示
数列第 $10 $ 项是 555555,55 mod 7=655 \bmod 7 = 655mod7=6。
【数据范围】
对于 100%100\%100% 的数据,p,q,a1,a2∈[0,231−1]p,q,a_1,a_2 \in [0,2^{31}-1]p,q,a1,a2∈[0,231−1],1≤n,m≤231−11\le n,m \le 2^{31}-11≤n,m≤231−1。
upd 2023.8.23\text{upd 2023.8.23}upd 2023.8.23:新增加一组 Hack 数据。
Scratch实现
接下来我会不断用scratch来实现信奥比赛中的算法题,感兴趣的请关注,我后续将继续分享相关内容