打卡信奥刷题(17)用Scratch图形化工具信奥P1349 广义斐波那契数列

斐波那契数列是一个非常常规的数列,fn=f(n-1)+f(n-2),也经常被人成为数字数列。不过本题比斐波那契数列多了一步,即将计算结果mod m

广义斐波那契数列

题目描述

广义的斐波那契数列是指形如 an=p×an−1+q×an−2a_n=p\times a_{n-1}+q\times a_{n-2}an=p×an1+q×an2 的数列。

今给定数列的两系数 pppqqq,以及数列的最前两项 a1a_1a1 和 $ a_2$,另给出两个整数 nnnmmm,试求数列的第 nnnana_nanmmm 取模后的结果。

输入格式

输入包含一行六个整数,p,q,a1,a2,n,mp,q,a_1,a_2,n,mp,q,a1,a2,n,m

输出格式

输出包含一行一个整数表示答案。

样例 #1

样例输入 #1

1 1 1 1 10 7

样例输出 #1

6

提示

数列第 $10 $ 项是 55555555 mod 7=655 \bmod 7 = 655mod7=6

【数据范围】
对于 100%100\%100% 的数据,p,q,a1,a2∈[0,231−1]p,q,a_1,a_2 \in [0,2^{31}-1]p,q,a1,a2[0,2311]1≤n,m≤231−11\le n,m \le 2^{31}-11n,m2311


upd 2023.8.23\text{upd 2023.8.23}upd 2023.8.23:新增加一组 Hack 数据。

Scratch实现

在这里插入图片描述
接下来我会不断用scratch来实现信奥比赛中的算法题,感兴趣的请关注,我后续将继续分享相关内容

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值