打卡信奥刷题(18)用Scratch图形化工具信奥B3736 [信息与未来 2018] 最大公约数

求最大公约数是编程里面一道非常经典的算法题,本实现,先求3个数的最小数,然后用变量i从1,一直循环到最小数的一半,如果x,y,z都能整除i,那么i即为x,y,z的公约数。

[信息与未来 2018] 最大公约数

题目描述

输入三个正整数 x , y , z x,y,z x,y,z,求它们的最大公约数(Greatest Common Divisor) g g g:最大的正整数 g ≥ 1 g ≥1 g1,满足 x , y , z x,y,z x,y,z 都是 g g g 的倍数,即 ( x   m o d   g ) = ( y   m o d   g ) = ( z   m o d   g ) = 0 (x \bmod g) = (y \bmod g) = (z \bmod g) = 0 (xmodg)=(ymodg)=(zmodg)=0

输入格式

输入一行三个正整数 x , y , z x,y,z x,y,z

输出格式

输出一行一个整数 g g g,表示 x , y , z x,y,z x,y,z 的最大公约数。

样例 #1

样例输入 #1

12 34 56

样例输出 #1

2

样例 #2

样例输入 #2

28 70 28

样例输出 #2

14

提示

样例解释

样例 1 1 1

12 = 2 × 6 , 34 = 2 × 17 , 56 = 2 × 28 , g = 2 12 = 2 × 6, 34 = 2 × 17, 56 = 2 × 28, g = 2 12=2×6,34=2×17,56=2×28,g=2

样例 2 2 2

28 = 14 × 2 , 70 = 14 × 5 , 28 = 14 × 2 , g = 14 28 = 14 × 2, 70 = 14 × 5, 28 = 14 × 2,g = 14 28=14×2,70=14×5,28=14×2,g=14

数据规模

所有数据满足 1 ≤ x , y , z ≤ 1 0 6 1 ≤ x,y,z ≤ 10^6 1x,y,z106

本题原始满分为 15 pts 15\text{pts} 15pts

Scratch的实现

在这里插入图片描述
考虑代码比较长,看的不是太清楚,将源代码上传到csdn,下载地址:https://download.csdn.net/download/rogeliu/89358690

接下来我会不断用scratch来实现信奥比赛中的算法题,感兴趣的请关注,我后续将继续分享相关内容

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值