[COCI2021-2022#4] Autići
题目描述
有 n n n 个好朋友,每人有一辆遥控汽车和一个车库。第 i i i 个人有若干个长度为 d i d_i di 的玩具道路部件,可以为汽车建造道路。
两个朋友 a a a 和 b b b 可以建造一条长度为 d a + d b d_a+d_b da+db 道路以连接他们的车库。
我们认为,如果从任意一个车库出发能够到达任意的其他车库,我们称这种情况为“连通交通”。
请求出,构成一个“连通交通”所需要的最小总道路长度是多少?
输入格式
第一行包含一个整数 n n n,表示朋友的人数。
第二行包含 n n n 个整数 d i d_i di,表示第 i i i 位朋友手中的道路部件的长度。
输出格式
仅一行,输出成一个“连通交通”所需要的最小总道路长度。
样例 #1
样例输入 #1
1
10
样例输出 #1
0
样例 #2
样例输入 #2
3
5 5 5
样例输出 #2
20
样例 #3
样例输入 #3
4
7 3 3 5
样例输出 #3
24
提示
【样例 1 解释】
当只有一位朋友时,已经构成“连通交通”,不必修建道路。故答案为 0 0 0。
【样例 3 解释】
如果在第 1 1 1 位和第 2 2 2 位朋友、第 2 2 2 位和第 3 3 3 位朋友、第 3 3 3 位和第 4 4 4 位朋友之间修建道路可以形成“连通道路”,价格总和为 ( 7 + 3 ) + ( 3 + 3 ) + ( 3 + 5 ) = 24 (7+3)+(3+3)+(3+5)=24 (7+3)+(3+3)+(3+5)=24。
【数据规模与约定】
本题采用子任务捆绑测试。
- Subtask 1(10 pts): d 1 = d 2 = ⋯ = d n d_1 = d_2 = \dots = d_n d1=d2=⋯=dn。
- Subtask 2(20 pts): 1 ≤ n ≤ 1 0 3 1 ≤ n ≤ 10^3 1≤n≤103。
- Subtask 3(20 pts):没有额外限制。
对于 100 % 100\% 100% 的数据, 1 ≤ n ≤ 1 0 5 , 1 ≤ d i ≤ 1 0 9 1\le n\le10^5,1\le d_i\le 10^9 1≤n≤105,1≤di≤109。
【提示与说明】
本题分值按 COCI 原题设置,满分 50 50 50。
**题目译自 COCI2021-2022 CONTEST #4 T1 Autići。
Scratch实现
后续
接下来我会不断用scratch来实现信奥比赛中的算法题、Scratch考级编程题实现、白名单赛事考题实现,感兴趣的请关注,我后续将继续分享相关内容