代码随想录day31| 理论基础 455.分发饼干 376. 摆动序列 53. 最大子序和

目录

题目:455.分发饼干

题目链接:https://leetcode.cn/problems/assign-cookies/

题目:376. 摆动序列

题目:https://leetcode.cn/problems/wiggle-subsequence/

题目:53. 最大子序和

题目链接:https://leetcode.cn/problems/maximum-subarray/


刷题或者面试的时候,手动模拟一下感觉可以局部最优推出整体最优,而且想不到反例,那么就试一试贪心

贪心算法一般分为如下四步:

  • 将问题分解为若干个子问题
  • 找出适合的贪心策略
  • 求解每一个子问题的最优解
  • 将局部最优解堆叠成全局最优解

题目:455.分发饼干

题目链接:https://leetcode.cn/problems/assign-cookies/


假设你是一位很棒的家长,想要给你的孩子们一些小饼干。但是,每个孩子最多只能给一块饼干。

对每个孩子 i,都有一个胃口值 g[i],这是能让孩子们满足胃口的饼干的最小尺寸;并且每块饼干 j,都有一个尺寸 s[j] 。如果 s[j] >= g[i],我们可以将这个饼干 j 分配给孩子 i ,这个孩子会得到满足。你的目标是尽可能满足越多数量的孩子,并输出这个最大数值。

示例 1:

  • 输入: g = [1,2,3], s = [1,1]
  • 输出: 1 解释:你有三个孩子和两块小饼干,3个孩子的胃口值分别是:1,2,3。虽然你有两块小饼干,由于他们的尺寸都是1,你只能让胃口值是1的孩子满足。所以你应该输出1。

示例 2:

  • 输入: g = [1,2], s = [1,2,3]
  • 输出: 2
  • 解释:你有两个孩子和三块小饼干,2个孩子的胃口值分别是1,2。你拥有的饼干数量和尺寸都足以让所有孩子满足。所以你应该输出2.

提示:

  • 1 <= g.length <= 3 * 10^4
  • 0 <= s.length <= 3 * 10^4
  • 1 <= g[i], s[j] <= 2^31 - 1

思路:局部最优是大饼干喂胃口大的小孩,全局最优是尽可能的喂饱更多的小孩。

示意图:

 

从后向前遍历小孩数组,定义饼干数组的索引为Index,初始化为最后一个元素,当遍历小孩数组时,如果满足条件:s[index]>=g[i],说明饼干能够喂饱小孩,这里要加一个条件Index>=0,防止访问饼干数组越界,就执行index减1,计数器加1,说明已经喂饱了一个小孩。

具体代码如下:

// 时间复杂度:O(nlogn)
// 空间复杂度:O(1)
class Solution {
public:
    int findContentChildren(vector<int>& g, vector<int>& s) {
        sort(g.begin(), g.end());
        sort(s.begin(), s.end());
        int index = s.size() - 1; // 饼干数组的下标
        int result = 0;
        for (int i = g.size() - 1; i >= 0; i--) {
            if (index >= 0 && s[index] >= g[i]) {
                result++;
                index--;
            }
        }
        return result;
    }
};

还有一种想法就是小饼干喂胃口小的小孩:

示意图如下:

 此时,我们需要从前往后遍历饼干数组,定义一个小孩数组的索引Index,初始化为0,如果满足s[i]>=g[Index]&&index<s.size(),则说明饼干能够喂饱小孩,执行index加1,遍历完饼干数组后,直接返回小孩数组的索引Index。

代码如下:

class Solution {
public:
    int findContentChildren(vector<int>& g, vector<int>& s) {
        sort(g.begin(),g.end());
        sort(s.begin(),s.end());
        int index = 0;
        for(int i = 0;i < s.size();++i){
            if(index < g.size() && g[index] <= s[i]){
                index++;
            }
        }
        return index;
    }
};

题目:376. 摆动序列

题目:https://leetcode.cn/problems/wiggle-subsequence/

如果连续数字之间的差严格地在正数和负数之间交替,则数字序列称为摆动序列。第一个差(如果存在的话)可能是正数或负数。少于两个元素的序列也是摆动序列。

例如, [1,7,4,9,2,5] 是一个摆动序列,因为差值 (6,-3,5,-7,3) 是正负交替出现的。相反, [1,4,7,2,5] 和 [1,7,4,5,5] 不是摆动序列,第一个序列是因为它的前两个差值都是正数,第二个序列是因为它的最后一个差值为零。

给定一个整数序列,返回作为摆动序列的最长子序列的长度。 通过从原始序列中删除一些(也可以不删除)元素来获得子序列,剩下的元素保持其原始顺序。

示例 1:

  • 输入: [1,7,4,9,2,5]
  • 输出: 6
  • 解释: 整个序列均为摆动序列。

示例 2:

  • 输入: [1,17,5,10,13,15,10,5,16,8]
  • 输出: 7
  • 解释: 这个序列包含几个长度为 7 摆动序列,其中一个可为[1,17,10,13,10,16,8]。

示例 3:

  • 输入: [1,2,3,4,5,6,7,8,9]
  • 输出: 2

 思路:删除单调坡度上的节点(坡两端的节点不删除),其实不用对序列进行删除操作,只需要统计数组的峰值就行。

示意图:

如果数组是[2,5],数组有两个峰值,我们可以初始化preDiff=0,相当于在数组第一个元素之前加了一个和nums[0]一样的元素,数组就相当于[2,2,5],

 

当数组遍历到第一个元素时,由于curDiff=3>0,preDiff<=0,此时记录峰值个数result加1,但是result应该初始化为1,默认最右面有一个峰值,最后得到result=2,返回result。

具体代码如下:

class Solution {
public:
    int wiggleMaxLength(vector<int>& nums) {
        if (nums.size() <= 1) return nums.size();
        int curDiff = 0; // 当前一对差值
        int preDiff = 0; // 前一对差值
        int result = 1;  // 记录峰值个数,序列默认序列最右边有一个峰值
        for (int i = 0; i < nums.size() - 1; i++) {
            curDiff = nums[i + 1] - nums[i];
            // 出现峰值
            if ((curDiff > 0 && preDiff <= 0) || (preDiff >= 0 && curDiff < 0)) {
                result++;
                preDiff = curDiff;
            }
        }
        return result;
    }
};

题目:53. 最大子序和

题目链接:https://leetcode.cn/problems/maximum-subarray/

给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

示例: 输入: [-2,1,-3,4,-1,2,1,-5,4] 输出: 6 解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。

问题:

怎么确定最大子数组和的起点和终点?

思路:

定义count=0,遍历nums数组,如果count+nums[i]<=0,则更新子数组的起点为nums[i+1],还需要定义一个result来收集结果,同时也就确定了最大子数组的终点,如果count>result,则更新result,令result=count。

 

代码如下:

class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        int result = INT32_MIN;
        int count = 0;
        for (int i = 0; i < nums.size(); i++) {
            count += nums[i];
            if (count > result) { // 取区间累计的最大值(相当于不断确定最大子序终止位置)
                result = count;
            }
            if (count <= 0) count = 0; // 相当于重置最大子序起始位置,因为遇到负数一定是拉低总和
        }
        return result;
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值