【习题详解】动态规划:线性DP

最长上升子序列LIS

问题:求一串数字的最长上升自序列
设f[i]为以第i位数字结尾的子序列的最大长度.当我们枚举i时,我们需要从左往右枚举i前面的数字j,若数字j小于数字i则说明数字i可以在以j结尾的序列之后,因此f[j]+1是一种方案数.若没有比i小的时候,则f[i]=1.故状态转移方程是:

f(i)=max{ f[j]+10ji,a[j]<a[i]f[i]   f ( i ) = m a x { f [ j ] + 1 , 0<j<i,a[j]<a[i] f [ i ]

其中,f[i]的初始值为1.
故代码如下:

#include<bits/stdc++.h>
using namespace std;
int n,ans=0;
int a[10000];
int f[10000];
int main()
{
    ios::sync_with_stdio(false);
    cin>>n;
    for (int i=1;i<=n;i++)
        cin>>a[i];
    for (int i=1;i<=n;i++)
    {
        f[i]=1;
        for (int j=1;j<i;j++)
            if (a[j]<a[i])
                f[i]=max(f[i],f[j]+1);
        ans=max(ans,f[i]);
    }
    cout<<f[n];
    return 0;
} 

最长公共子串LCS

这道题是由两个字符串组成,所以我们需要用二维数组去限制.
我们可以设f[i][j]为第一个字符串的长度到i,第二个字符串的长度到j的最长公共子串.显然,我们枚举i和j时.
若a[i]=b[j],则说明这两个字母可以在最长公共子串中再添加这个字母且不会形成冲突,因此可以在原来的最长公共子串的基础上加上1,在表示当前的最长公共子串.
若a[i]!=b[j],则说明这两个字母不能同时构成最长公共子串,则可以在选其中一个字母的基础上进行抉择.
因此我们可以得到状态转移方程:

f[i][j]=max⎧ ⎩ ⎨ f[i1][j1],f[i1][j],f[i][j1], a[i]=a[j]a[i]≠a[j]a[i]≠a[j]  
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
动态规划线性规划和非线性规划是三种不同的优化方法,它们的思想和应用场景不同,具体区别如下: 1. 动态规划动态规划是一种在有重叠子问题和最优子结构的情况下可以采用的算法思想。动态规划通常用于解决多阶段决策问题,每个阶段的决策依赖于前面各个阶段的决策。常见的动态规划问题有最长公共子序列、背包问题等。 2. 线性规划:线性规划是一种优化问题,它的目标是在一组线性约束条件下最大化或最小化线性目标函数的值。线性规划问题通常可以用线性规划算法求解,这种算法的核心是单纯形法。常见的线性规划问题有生产计划、运输问题等。 3. 非线性规划:非线性规划是一类目标函数或约束条件中包含非线性项的优化问题。非线性规划问题通常比线性规划问题更难求解,因为它们的解空间通常是非凸的。常见的非线性规划问题有最小二乘法、无约束优化问题等。 举例来说: 1. 动态规划:最长公共子序列问题是一个经典的动态规划问题。给定两个字符串,求它们的最长公共子序列的长度。这个问题可以用动态规划算法求解,其中状态转移方程为:dp[i][j] = dp[i-1][j-1] + 1,当 s1[i] == s2[j] 时;否则,dp[i][j] = max(dp[i-1][j], dp[i][j-1])。 2. 线性规划:假设一个工厂有 2 种机器可以用于生产产品 A 和 B,每种机器的使用时间和成本如下表所示。现在需要制定一个生产计划,使得生产的产品 A 和 B 的总成本最小,同时满足以下约束条件:每种机器的使用时间不得超过 40 小时,产品 A 和 B 的总生产量分别不得少于 100 和 200。 | 机器 | 生产 A 的时间 | 生产 B 的时间 | A 的成本 | B 的成本 | |------|-------------|-------------|---------|---------| | 1 | 10 | 20 | 2 | 3 | | 2 | 20 | 10 | 3 | 2 | 这个问题可以用线性规划算法求解,其中目标函数为:2A + 3B + 3A + 2B = 5A + 5B,约束条件为:10A + 20B ≤ 400,20A + 10B ≤ 400,A ≥ 100,B ≥ 200。 3. 非线性规划:假设有一组数据点 {(x1, y1), (x2, y2), ..., (xn, yn)},现在要求在所有二次函数 y = ax^2 + bx + c 中找到一个最优的拟合函数,使得实际数据点与拟合函数之间的误差最小。这个问题可以用非线性规划算法求解,其中目标函数为误差平方和,即 min Σ(yi - axi^2 - bxi - c)^2。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值