『莫比乌斯反演』「HAOI2011」Problem B

题目描述

对于给出的 n n n个询问,每次求有多少个数对 ( x , y ) (x,y) (x,y),满足 a ≤ x ≤ b a≤x≤b axb c ≤ y ≤ d c≤y≤d cyd,且 g c d ( x , y ) = k gcd(x,y) = k gcd(x,y)=k g c d ( x , y ) gcd(x,y) gcd(x,y)函数为 x x x y y y的最大公约数。

题解

先求 1 − x 1-x 1x 1 − y 1-y 1y的满足 g c d ( x , y )   =   k gcd(x,y)\ =\ k gcd(x,y) = k的数对:我们设 f ( i ) f(i) f(i)表示 k ∣ g c d ( x , y ) k|gcd(x,y) kgcd(x,

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值