洛谷P2522 [HAOI2011]Problem b

洛谷P2522 [HAOI2011]Problem b

前置知识:莫比乌斯反演

题解

f ( k ) = ∑ x = a b ∑ y = c d [ gcd ⁡ ( x , y ) = k ] , F ( k ) = ∑ x = a b ∑ x = c d [ k ∣ gcd ⁡ ( x , y ) ] f(k)=\sum\limits_{x=a}^b\sum\limits_{y=c}^d[\gcd(x,y)=k],F(k)=\sum\limits_{x=a}^b\sum\limits_{x=c}^d[k|\gcd(x,y)] f(k)=x=aby=cd[gcd(x,y)=k],F(k)=x=abx=cd[kgcd(x,y)]

则有 F ( k ) = ∑ k ∣ n f ( n ) F(k)=\sum\limits_{k|n}f(n) F(k)=knf(n)

莫比乌斯反演可得

f ( k ) = ∑ k ∣ n μ ( n k ) × F ( n ) f(k)=\sum\limits_{k|n}\mu(\dfrac nk)\times F(n) f(k)=knμ(kn)×F(n)

因为 F ( k ) = ∑ x = a b ∑ x = c d [ k ∣ gcd ⁡ ( x , y ) ] = ( ⌊ b k ⌋ − ⌊ a − 1 k ⌋ ) × ( ⌊ d k ⌋ − ⌊ c − 1 k ⌋ ) F(k)=\sum\limits_{x=a}^b\sum\limits_{x=c}^d[k|\gcd(x,y)]=(\lfloor \dfrac bk \rfloor-\lfloor \dfrac{a-1}{k} \rfloor)\times (\lfloor \dfrac dk \rfloor-\lfloor \dfrac{c-1}{k} \rfloor) F(k)=x=abx=cd[kgcd(x,y)]=(⌊kbka1⌋)×(⌊kdkc1⌋)

所以 f ( k ) = ∑ k ∣ n μ ( n k ) × F ( n ) = ∑ k ∣ n μ ( n k ) × ( ⌊ b n ⌋ − ⌊ a − 1 n ⌋ ) × ( ⌊ d n ⌋ − ⌊ c − 1 n ⌋ ) f(k)=\sum\limits_{k|n}\mu(\dfrac nk)\times F(n)=\sum\limits_{k|n}\mu(\dfrac nk)\times (\lfloor \dfrac bn \rfloor-\lfloor \dfrac{a-1}{n} \rfloor)\times (\lfloor \dfrac dn \rfloor-\lfloor \dfrac{c-1}{n} \rfloor) f(k)=knμ(kn)×F(n)=knμ(kn)×(⌊nbna1⌋)×(⌊ndnc1⌋)

T T T为数据组数, w w w a , b , c , d a,b,c,d a,b,c,d的最大值,则每次询问的时间复杂度为 O ( w k ) O(\dfrac wk) O(kw),总时间复杂度为 O ( T × w k ) O(T\times \dfrac wk) O(T×kw),一些数据可能过不了,所以我们考虑优化。

对于式子中的 ( ⌊ b n ⌋ − ⌊ a − 1 n ⌋ ) × ( ⌊ d n ⌋ − ⌊ c − 1 n ⌋ ) (\lfloor \dfrac bn \rfloor-\lfloor \dfrac{a-1}{n} \rfloor)\times (\lfloor \dfrac dn \rfloor-\lfloor \dfrac{c-1}{n} \rfloor) (⌊nbna1⌋)×(⌊ndnc1⌋),我们可以用数论分块。对于一个左端点,取一个满足四个数都不变的右端点。总共能取 8 w 8\sqrt w 8w 个值,于是每次询问的操作就优化到 O ( w ) O(\sqrt w) O(w ),总时间复杂度为 O ( T w ) O(T\sqrt w) O(Tw )

code

#include<bits/stdc++.h>
using namespace std;
const int N=200000;
int t,a,b,c,d,k,lst,z[N+5],p[N+5],mu[N+5],s[N+5];
long long ans;
int main()
{
	mu[1]=1;
	for(int i=2;i<=N;i++){
		if(!z[i]){
			p[++p[0]]=i;mu[i]=-1;
		}
		for(int j=1;j<=p[0]&&i*p[j]<=N;j++){
			z[i*p[j]]=1;
			if(i%p[j]==0){
				mu[i*p[j]]=0;break;
			}
			mu[i*p[j]]=-mu[i];
		}
	}
	for(int i=1;i<=N;i++){
		s[i]=s[i-1]+mu[i];
	}
	scanf("%d",&t);
	while(t--){
		scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);
		ans=0;lst=0;
		for(int i=k,vt;;i+=k){
			vt=N;
			if(a-1>=i) vt=min(vt,(a-1)/((a-1)/i));
			if(b>=i) vt=min(vt,b/(b/i));
			if(c-1>=i) vt=min(vt,(c-1)/((c-1)/i));
			if(d>=i) vt=min(vt,d/(d/i));
			if(vt>=N) break;
			i=vt/k*k;
			ans+=1ll*(s[i/k]-s[lst/k])*(b/i-(a-1)/i)*(d/i-(c-1)/i);
			lst=i; 
		}
		printf("%lld\n",ans);
	}
	return 0;
}
  • 3
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
这道题目还可以使用树状数组或线段树来实现,时间复杂度也为 $\mathcal{O}(n\log n)$。这里给出使用树状数组的实现代码。 解题思路: 1. 读入数据; 2. 将原数列离散化,得到一个新的数列 b; 3. 从右往左依次将 b 数列中的元素插入到树状数组中,并计算逆序对数; 4. 输出逆序对数。 代码实现: ```c++ #include <cstdio> #include <cstdlib> #include <algorithm> const int MAXN = 500005; struct Node { int val, id; bool operator<(const Node& other) const { return val < other.val; } } nodes[MAXN]; int n, a[MAXN], b[MAXN], c[MAXN]; long long ans; inline int lowbit(int x) { return x & (-x); } void update(int x, int val) { for (int i = x; i <= n; i += lowbit(i)) { c[i] += val; } } int query(int x) { int res = 0; for (int i = x; i > 0; i -= lowbit(i)) { res += c[i]; } return res; } int main() { scanf("%d", &n); for (int i = 1; i <= n; ++i) { scanf("%d", &a[i]); nodes[i] = {a[i], i}; } std::sort(nodes + 1, nodes + n + 1); int cnt = 0; for (int i = 1; i <= n; ++i) { if (i == 1 || nodes[i].val != nodes[i - 1].val) { ++cnt; } b[nodes[i].id] = cnt; } for (int i = n; i >= 1; --i) { ans += query(b[i] - 1); update(b[i], 1); } printf("%lld\n", ans); return 0; } ``` 注意事项: - 在对原数列进行离散化时,需要记录每个元素在原数列中的位置,便于后面计算逆序对数; - 设树状数组的大小为 $n$,则树状数组中的下标从 $1$ 到 $n$,而不是从 $0$ 到 $n-1$; - 在计算逆序对数时,需要查询离散化后的数列中比当前元素小的元素个数,即查询 $b_i-1$ 位置上的值; - 在插入元素时,需要将离散化后的数列的元素从右往左依次插入树状数组中,而不是从左往右。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值