HDU 3177 http://acm.hdu.edu.cn/showproblem.php?pid=3177
题目大意:向一个容量为V的洞中搬物品 每件物品有一个停放体积 可一个移动体积 问能否放下这些物品
解题思路:对这些物品进行排序 按照顺序依次进入洞中 排序要尽可能使得所有的东西都能进入洞中
这是一个贪心的问题
停放体积 移动体积
第一件物品 a1 b1
第二件物品 a2 b2
假设这两件物品的移动体积都不大于洞的体积V
那么将单独比较两个物品的时候会发现 a1+b2为先放第一件物品 后放第二件物品的最大瞬时体积
a2+b1为先放第二件物品 后放第一件物品的最大瞬时体积
我们应该选择a1+b2和a2+b1中比较小的先放
那么从2件物品 扩展到N件物品 假设n件物品的移动体积都不大于洞的体积V(如果有大于的 那么结果必然是NO)
将N件物品按照a1+b2<a2+b1进行排序 然后依次放入洞中
Source Code:
#include <cstdio>
#include <iostream>
#include <algorithm>
using namespace std;
struct node{
int a,b;
}equ[1010];
bool cmp(node a,node b){
return a.a+b.b<b.a+a.b;
}
int main()
{
int T,V,N;
scanf("%d",&T);
while(T--){
scanf("%d %d",&V,&N);
for(int i=0;i<N;i++)
scanf("%d %d",&equ[i].a,&equ[i].b);
sort(equ,equ+N,cmp);
bool flag=true;
for(int i=0;i<N;i++){
if(V>=equ[i].b) V-=equ[i].a;
else { flag=false;break;}
}
if(flag) printf("Yes\n");
else printf("No\n");
}
return 0;
}
HDU 3466 http://acm.hdu.edu.cn/showproblem.php?pid=3466
题目大意:给定n个物品和钱m,每个物品有价格p,限制钱数q,价值v,限制q的意思是你手头的前必须大等于q才能装买这个物品,问最后获得的最大价值。n<=500,m<=5000.
解题思路:与顺序有关的01背包。初看之下似乎和普通背包差不多,判容量大于q时才装。但是这会出大问题,如果一个物品p = 5,q = 7,一个物品p = 5,q = 9,如果先算第一个,那么当次只有7,8...m可以进行状态转移,装第二个物品的时候9,10..m进行转移,第二个物品转移就可以借用第一个物品的那些个状态,而第二个物品先转移,第一个再转移则不能。当然,还有价格有关,当限制一样价格不同时顺序就影响结果。
最开始我的排序策略是先按限制从到大排,再按价格从大到小排,这样排序我自己出了两组测试数据和题目给的数据结果都是正确的,但是下面测试数据中的第一组数据过不了。然后就拼命想排序策略,想到一种组合的排序策略--限制又小价格又贵的先选,也就是q-p小的先选。为什么这样呢?A:p1,q1 B: p2,q2,先选A,则至少需要p1+q2的容量,而先选B则至少需要p2+q1,如果p1+q2>p2+q1,那么要选两个的话的就要先选A再选B,公式可换成q1-p1 < q2-p2,就按这样的方法排序最后的顺序就是最优的顺序。
这题换成多重背包可以用同样的方法处理。
(分析转自ZeroClock)
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#define Max(a,b) ((a)>(b)?(a):(b))
using namespace std;
int n,m;
int f[5005];
struct node{
int p,q,v;
} mer[505];
bool cmp(node a,node b){
return a.q-a.p<b.q-b.p;
}
int main()
{
int n,m;
while(scanf("%d %d",&n,&m)!=EOF){
memset(f,0,sizeof(f));
for(int i=1;i<=n;i++){
scanf("%d %d %d",&mer[i].p,&mer[i].q,&mer[i].v);
}
sort(mer+1,mer+n+1,cmp);
for(int i=1;i<=n;i++){
for(int j=m;j>=mer[i].p;j--){
if(j>=mer[i].q) f[j]=Max(f[j],f[j-mer[i].p]+mer[i].v);
}
}
printf("%d\n",f[m]);
}
return 0;
}