数据结构的增删改查永远是逃不掉的基本操作,那就从节点的查找开始吧。
700. 二叉搜索树中的搜索
可以直接很暴力地遍历每一个节点进行比较:
class Solution:
def searchBST(self, root: TreeNode, val: int) -> TreeNode:
if not root:return None
if root.val == val:
return root
return self.searchBST(root.left,val) or self.searchBST(root.right,val)
或者更优一点的方法,我们可以利用BST的性质,采用二分查找的思想,不断地缩小递归的范围:
class Solution:
def searchBST(self, root: TreeNode, val: int) -> TreeNode:
if not root:return None
if root.val == val:
return root
if val > root.val:
# 因为是返回被查找节点所在的子树,故需要返回
return self.searchBST(root.right,val)
else:
return self.searchBST(root.left,val)
这基本就可以当作BST遍历的模板来使用了。
def BST(root,target):
if not root:return
if target == root.val:
# do something
elif target > root.val:
BST(root.right,target)
else:
BST(root.left,target)
我们拿这个模板再来看一下节点的插入:
701. 二叉搜索树中的插入操作
这里其实直接套用模板即可,但是需要注意,当root为空的时候就是元素应该新插入节点的时候;并且需要在递归中更新左右子树:
class Solution:
def insertIntoBST(self, root: TreeNode, val: int) -> TreeNode:
if not root:
# root为空即为要插入的地方
return TreeNode(val)
# val == root.val题目中说不需要考虑
if val > root.val:
# 注意:因为是插入元素,即更新树,这里就是更新对应的左右子树
root.right = self.insertIntoBST(root.right,val)
elif val < root.val:
root.left = self.insertIntoBST(root.left,val)
return root
450. 删除二叉搜索树中的节点
对于这种问题我们先利用框架:
def action_BST(root,key):
if not root: return
if root.val == key:
# do something
elif root.val > key:
action_BST(root.right,key)
else:
action_BST(root.left,key)
基本思路还是按照BST的特性,利用二分查找的思想,缩小递归范围。只不过在删除二叉树的时候,删掉之后对应子树的变化会有三种情况,需要全部考虑到。
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def deleteNode(self, root: Optional[TreeNode], key: int) -> Optional[TreeNode]:
def get_min(node):
# BST的最左边就是最小的
while node.left:
node = node.left
return node
if not root:return
if root.val == key:
# 找到了,要执行一堆动作
# 如果某一边为空则返回另一边,两边都为空也能包住,返回空
if not root.right:return root.left
if not root.left: return root.right
# 对于两边都有子树的情况
# 先找到右子树中的最小值
minNode = get_min(root.right)
# 再让这个最小值顶替掉当前要删除的节点
root.val = minNode.val
# 再删除右子树中的那个最小值
root.right = self.deleteNode(root.right,minNode.val)
elif key > root.val:
# 大于根节点,在右子树中递归查找
root.right = self.deleteNode(root.right,key)
else:
# 小于根节点,在左子树中递归查找
root.left = self.deleteNode(root.left,key)
return root
最后我们来看一道验证BST的题,也是很经典:
98. 验证二叉搜索树
我可以利用BST的定义来做这道题,但是需要注意参数的传递,不能简单判断根节点的左右子树:
class Solution:
def isValidBST(self, root: TreeNode) -> bool:
def isValid(root,min,max):
if not root:return True
if min and root.val <= min.val:return False
if max and root.val >= max.val:return False
return isValid(root.left,min,root) and isValid(root.right,root,max)
return isValid(root,None,None)
或者另一种写法:
class Solution:
def isValidBST(self, root: TreeNode) -> bool:
def isValid(root,min,max):
if not root:return True
if min < root.val < max:
return isValid(root.left,min,root.val) and isValid(root.right,root.val,max)
else:
return False
return isValid(root,-float('inf'),float('inf'))
或者我们也可以利用中序遍历结果是否升序来判断:
class Solution:
def isValidBST(self, root: TreeNode) -> bool:
# 注意初始化的值,不能是0
self.pre = -float('inf')
def isValid(root):
if not root: return True
l = isValid(root.left)
if root.val <= self.pre:
return False
# 注意更新实际是在判断之后
self.pre = root.val
r = isValid(root.right)
return l and r
return isValid(root)
当然还可以用迭代方法实现上述过程:
class Solution:
def isValidBST(self, root: TreeNode) -> bool:
stack, inorder = [], float('-inf')
while stack or root:
while root:
stack.append(root)
root = root.left
root = stack.pop()
# 如果中序遍历得到的节点的值小于等于前一个 inorder,说明不是二叉搜索树
if root.val <= inorder:
return False
inorder = root.val
root = root.right
return True