论文阅读
解读论文
Ronnyz
这个作者很懒,什么都没留下…
展开
-
A Deep Learning Approach to Fast, Format-Agnostic Detection of Malicious Web Content
一种快速、不区分格式的检测恶意Web内容的深度学习方法作者:fish@DAS原文作者:Joshua Saxe(主页[1]), Richard Harang, Cody Wild, Hillary Sanders原文标题:A Deep Learning Approach to Fast, Format-Agnostic Detection of Malicious Web Content.原文会议:2018 IEEE Security and Privacy Workshops (SPW)原文链接:转载 2020-06-11 09:02:56 · 373 阅读 · 0 评论 -
基于深度学习的恶意 URL 识别
基于深度学习的恶意 URL 识别原文作者:陈康, 付华峥, 向勇原文期刊:计算机系统应用,2018,27(6):27–33原文链接:http://www.c-s-a.org.cn/1003-3254/6370.html一、论文主要内容在本文工作中,我们提出一种基于深度学习的恶意 URL 识别模型。本文的模型基于 URL 词法特征进行检测。首先通过正常 URL 样本训练得到 URL 中的字符的分布表示。将 URL 转化成二维图像,然后通过训练 CNN 模型对二维图像进行特征抽取,最后使用全连接层原创 2020-06-11 08:58:08 · 5421 阅读 · 2 评论 -
基于PU-Learning的恶意URL检测
基于PU-Learning的恶意URL检测原文作者:Ya-Lin Zhang, Longfei Li, Jun Zhou, Xiaolong Li, Yujiang Liu, Yuanchao Zhang, Zhi-Hua Zhou原文会议:The ACM Conference on Computer and Communications Security (CCS)原文链接: CCS’17 https://dl.acm.org/citation.cfm?id=3138825一、论文主要内容本文描转载 2020-06-11 08:47:00 · 865 阅读 · 0 评论 -
基于机器学习的恶意URL识别--选自《通信技术》
基于机器学习的恶意URL识别原文作者:李泽宇,施勇,薛质原文期刊:信息安全与通信保密杂志社 选自《通信技术》2020年第二期 2020-03-10原文链接:https://www.secrss.com/articles/17764一、论文主要内容对多种机器学习模型特别是集成学习模型在恶意URL识别问题上的效果进行研究,结果表明,集成学习方法在召回率、准确率、正确率、F1值、AUC值等多项指标上整体优于传统机器学习模型,其中随机森林算法表现最优。可见,集成学习模型在恶意URL识别问题上具有应用价转载 2020-06-11 08:55:25 · 2776 阅读 · 2 评论