使用keras.backend.mean()后KerasTensor的shape变成()而不是(None, 1)所导致的问题与解决办法

问题描述

  1. 在基于tensorflow和keras框架的网络建模中,通过编译工具的Debug功能我们会发现网络中数据流的shape为(None, d1, d2, d3, ...),即shape的第一个位置为None,它代表网络可以一次接收batch_size个数据,便于数据流动和网络计算;

  2. 但是,对张量使用keras.backend.mean()方法求均值(如计算两个张量的MSE过程中)后,计算结果的shape变成了(),而不是(None, 1)

"""
input_ : 编码前的输入张量, 假设其Debug中的shape为(None, 120, 10)
output_ : 解码后的输出张量, 假设其Debug中的shape为(None, 120, 10)
"""
# 计算二者的MSE损失值
from keras import backend as K

# step1 : 计算绝对差值的平方
a = K.square(input_  - output_)		# a的KerasTensor shape:(None, 120, 10)

# step2 : 求均值
b = K.mean(a)						# b的KerasTensor shape:()
  1. 这可能会导致:当输入数据的个数一定时,网络输出数据的个数会随着参数batch_size大小的改变而发生变化:

假设搭建了一个基于重构方法的模型,输入20个数据,我希望网络能够输出20个重构loss值(MSE)。但是,当batch_size=2时,网络输出10个loss值;当batch_size=4时,网络输出5个loss值。


原因分析:

当张量KerasTensor数据的shape为()时,表明该数据是一个标量,正是因为它的shape不对,导致无论batch_size大小被设为多少,该轮batch都只会产生一个结果


解决方案:

解决思路很简单,就是将shape由()改成(None, 1)

操作方式:

# 计算二者的MSE损失值
import tensorflow as tf
from keras import backend as K

# step1 : 对张量进行reshape
input_ = tf.reshape(input_, [-1, 120 * 10])
output_ = tf.reshape(output_, [-1, 120 * 10])

# step2 : 计算绝对差值的平方
a = K.square(input_  - output_)			# a的KerasTensor shape:(None, 120, 10)

# step3 : 求均值
b = K.mean(a, axis=-1, keepdims=True)	# b的KerasTensor shape:(None, 1)
能给我讲讲这段代码吗def tcnBlock(incoming, filters, kernel_size, dilation_rate): net = incoming identity = incoming # net = BatchNormalization()(net) # net = Activation('relu')(net) net = keras.layers.LeakyReLU(alpha=0.2)(net) net = keras.layers.Dropout(0.3)(net) net = Conv1D(filters, kernel_size, padding='causal', dilation_rate=dilation_rate, kernel_regularizer=regularizers.l2(1e-3))(net) # net = BatchNormalization()(net) net = Activation('relu')(net) # net = keras.layers.LeakyReLU(alpha=0.2)(net) net = keras.layers.Dropout(0.3)(net) net = Conv1D(filters, kernel_size, padding='causal', dilation_rate=dilation_rate, kernel_regularizer=regularizers.l2(1e-3))(net) # 计算全局均值 net_abs = Lambda(abs_backend)(net) abs_mean = GlobalAveragePooling1D()(net_abs) # 计算系数 # 输出通道数 scales = Dense(filters, activation=None, kernel_initializer='he_normal', kernel_regularizer=regularizers.l2(1e-4))(abs_mean) # scales = BatchNormalization()(scales) scales = Activation('relu')(scales) scales = Dense(filters, activation='sigmoid', kernel_regularizer=regularizers.l2(1e-4))(scales) scales = Lambda(expand_dim_backend)(scales) # 计算阈值 thres = keras.layers.multiply([abs_mean, scales]) # 软阈值函数 sub = keras.layers.subtract([net_abs, thres]) zeros = keras.layers.subtract([sub, sub]) n_sub = keras.layers.maximum([sub, zeros]) net = keras.layers.multiply([Lambda(sign_backend)(net), n_sub]) if identity.shape[-1] == filters: shortcut = identity else: shortcut = Conv1D(filters, kernel_size, padding='same')(identity) # shortcut(捷径) net = keras.layers.add([net, shortcut]) return net
最新发布
06-07
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值