常用算法(三)——动态规划算法

动态规划算法

大纲目录

1、动态规划算法介绍

  1. 动态规划(Dynamic Programming)算法的核心思想是:将大问题划分为小问题进行解决,从而一步步获取最优解的处理算法

  2. 动态规划算法与分治算法类似,其基本思想也是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。

  3. 与分治法不同的是,适合于用动态规划求解的问题,经分解得到子问题往往不是互相独立的。 ( 即下一个子阶段的求解是建立在上一个子阶段的解的基础上,进行进一步的求解 )

  4. 动态规划可以通过填表的方式来逐步推进,得到最优解.

2、应用场景-背包问题

背包问题:有一个背包,容量为4磅 , 现有如下物品
在这里插入图片描述

  1. 要求达到的目标为装入的背包的总价值最大,并且重量不超出
  2. 要求装入的物品不能重复
  3. 思路分析和图解
  • 背包问题主要是指一个给定容量的背包、若干具有一定价值和重量的物品,如何选择物品放入背包使物品的价值最大。其中又分01背包和完全背包(完全背包指的是:每种物品都有无限件可用)

  • 这里的问题属于01背包,即每个物品最多放一个。而无限背包可以转化为01背包。

  • 算法的主要思想,利用动态规划来解决。每次遍历到的第i个物品,根据w[i]和v[i]来确定是否需要将该物品放入背包中。即对于给定的n个物品,设v[i]、w[i]分别为第i个物品的价值和重量,C为背包的容量。再令v[i][j]表示在前i个物品中能够装入容量为j的背包中的最大价值。则我们有下面的结果:

(1) v[i][0]=v[0][j]=0; //表示 填入表 第一行和第一列是0
(2) 当w[i]> j 时:v[i][j]=v[i-1][j] // 当准备加入新增的商品的容量大于 当前背包的容量时,就直接使用上一个单元格的装入策略
(3) 当j>=w[i]时: v[i][j]=max{v[i-1][j], v[i]+v[i-1][j-w[i]]}
当 准备加入的新增的商品的容量小于等于当前背包的容量,
装入的方式:
v[i-1][j]: 就是上一个单元格的装入的最大值
v[i] : 表示当前商品的价值
v[i-1][j-w[i]] : 装入i-1商品,到剩余空间j-w[i]的最大值
j>=w[i]时: v[i][j]=max{v[i-1][j], v[i]+v[i-1][j-w[i]]} :

2.2 动态规划背包思路

以上述背包问题为例说明:
解决类似的问题可以分解成一个个的小问题进行解决,假设存在背包容量大小分为1,2,3,4的各种容量的背包(分配容量的规则为最小重量的整数倍):
v[i][0]=v[0][j]=0;
例如:

物品0 磅1磅2磅3磅4磅
00000
吉他(G) 1磅0
音响(S) 4磅0
电脑(L) 3磅0
  1. 对于第一行(i=1), 目前只有吉他可以选择,所以
物品0 磅1磅2磅3磅4磅
00000
吉他(G) 1磅01500(G)1500(G)1500(G)1500(G)
音响(S) 4磅0
电脑(L) 3磅0
  1. 对于第二行(i=2),目前存在吉他和音响可以选择,所以
物品0 磅1磅2磅3磅4磅
00000
吉他(G) 1磅01500(G)1500(G)1500(G)1500(G)
音响(S) 4磅01500(G)1500(G)1500(G)3000(S)
电脑(L) 3磅0
  1. 对于第三行(i=3),目前存在吉他和音响、电脑可以选择,所以
    |物品 | 0 磅 | 1磅 |2磅 |3磅 | 4磅|
    |–|–|–|–|–|–|
    | | 0 |0 |0 | 0 |0 |
    | 吉他(G) 1磅 | 0 | 1500(G) | 1500(G) | 1500(G) | 1500(G)|
    | 音响(S) 4磅 | 0 | 1500(G) | 1500(G) | 1500(G) | 3000(S)|
    | 电脑(L) 3磅 | 0 | 1500(G) | 1500(G) | 2000(L) | 3500(L+G|
w[i] 和 j 之间的关系 推导…

案例一:v[1][1] = ? w[1] = 1 j = 1
使用公式:
v[i][j]=max{v[i-1][j],v[i-1][j-w[i]]+v[i]} = v[1][1] = max{v[0][0], v[0][0]+v[1]} = max{0, 0 + 1500}
案例二:v[3][4] = ? i = 3 j = 4 w[3] = 3
j >= w[3]
使用公式:
v[i][j]=max{v[i-1][j],v[i-1][j-w[i]]+v[i]} = v[3][4] = max{v[2][4], v[2][1]+v[3]} = max{3000, 1500 + 2000} = max{3000, 3500} = 3500

三、源码

public class KnapsackProblem {

	public static void main(String[] args) {
		// TODO Auto-generated method stub
		int[] w = {1, 4, 3};//物品的重量
		int[] val = {1500, 3000, 2000}; //物品的价值 这里val[i] 就是前面讲的v[i]
		int m = 4; //背包的容量
		int n = val.length; //物品的个数
		
		
		
		//创建二维数组,
		//v[i][j] 表示在前i个物品中能够装入容量为j的背包中的最大价值
		int[][] v = new int[n+1][m+1];
		//为了记录放入商品的情况,我们定一个二维数组
		int[][] path = new int[n+1][m+1];
		
		//初始化第一行和第一列, 这里在本程序中,可以不去处理,因为默认就是0
		for(int i = 0; i < v.length; i++) {
			v[i][0] = 0; //将第一列设置为0
		}
		for(int i=0; i < v[0].length; i++) {
			v[0][i] = 0; //将第一行设置0
		}
		
		
		//根据前面得到公式来动态规划处理
		for(int i = 1; i < v.length; i++) { //不处理第一行 i是从1开始的
			for(int j=1; j < v[0].length; j++) {//不处理第一列, j是从1开始的
				//公式
				if(w[i-1]> j) { // 因为我们程序i 是从1开始的,因此原来公式中的 w[i] 修改成 w[i-1]
					v[i][j]=v[i-1][j];
				} else {
					//说明:
					//因为我们的i 从1开始的, 因此公式需要调整成
					//v[i][j]=Math.max(v[i-1][j], val[i-1]+v[i-1][j-w[i-1]]);
					//v[i][j] = Math.max(v[i - 1][j], val[i - 1] + v[i - 1][j - w[i - 1]]);
					//为了记录商品存放到背包的情况,我们不能直接的使用上面的公式,需要使用if-else来体现公式
					if(v[i - 1][j] < val[i - 1] + v[i - 1][j - w[i - 1]]) {
						v[i][j] = val[i - 1] + v[i - 1][j - w[i - 1]];
						//把当前的情况记录到path
						path[i][j] = 1;
					} else {
						v[i][j] = v[i - 1][j];
					}
					
				}
			}
		}
		
		//输出一下v 看看目前的情况
		for(int i =0; i < v.length;i++) {
			for(int j = 0; j < v[i].length;j++) {
				System.out.print(v[i][j] + " ");
			}
			System.out.println();
		}
		
		System.out.println("============================");
		//输出最后我们是放入的哪些商品
		//遍历path, 这样输出会把所有的放入情况都得到, 其实我们只需要最后的放入
//		for(int i = 0; i < path.length; i++) {
//			for(int j=0; j < path[i].length; j++) {
//				if(path[i][j] == 1) {
//					System.out.printf("第%d个商品放入到背包\n", i);
//				}
//			}
//		}
		
		//动脑筋
		int i = path.length - 1; //行的最大下标
		int j = path[0].length - 1;  //列的最大下标
		while(i > 0 && j > 0 ) { //从path的最后开始找
			if(path[i][j] == 1) {
				System.out.printf("第%d个商品放入到背包\n", i); 
				j -= w[i-1]; //w[i-1]
			}
			i--;
		}
		
	}

}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值