线性方程组算法解析
1. 带状矩阵的循环约简算法
循环约简算法可以推广到半带宽 $r > 1$ 的带状矩阵。假设 $n = s · r$,矩阵可表示为块三对角矩阵:
[
\begin{pmatrix}
B^{(0)}
1 & C^{(0)}_1 & 0 \
A^{(0)}_2 & B^{(0)}_2 & C^{(0)}_2 \
\vdots & \vdots & \vdots \
A^{(0)}
{s - 1} & B^{(0)}
{s - 1} & C^{(0)}
{s - 1} \
0 & A^{(0)}
s & B^{(0)}_s
\end{pmatrix}
\begin{pmatrix}
X_1 \
X_2 \
\vdots \
X
{s - 1} \
X_s
\end{pmatrix}
=
\begin{pmatrix}
Y^{(0)}
1 \
Y^{(0)}_2 \
\vdots \
Y^{(0)}
{s - 1} \
Y^{(0)}
s
\end{pmatrix}
]
其中:
- $A^{(0)}_i = (a
{lm})
{l \in I_i, m \in I
{i - 1}}$,$i = 2, \cdots, s$
- $B^{(0)}
i = (a
{lm})
{l \in I_i, m \in I_i}$,$i = 1, \cdots, s$
- $C^{(0)}_i = (a
{lm})
{l \in I_i, m \in I
{i + 1}}$,$i = 1, \cdots, s - 1$
- 索引集 $I_i = {j \in N | (i - 1)r < j \leq ir}$,$i = 1, \cdots, s$
- 向量 $X_i, Y^{(0)}
i \in R^r$,$X_i = (x_l)
{l \in I_i}$,$Y^{(0)}
i = (y_l)
{l \in I_i}$,$i = 1, \cdots, s$
算法步骤如下:
1.
初始化
:
- $A^{(0)}
1 := 0 \in R^{r \times r}$,$C^{(0)}_s := 0 \in R^{r \times r}$
- 对于 $k = 0, \cdots, \lceil \log s \rceil$ 和 $i \in Z \setminus {1, \cdots, s}$:
- $A^{(k)}_i = C^{(k)}_i := 0 \in R^{r \times r}$
- $B^{(k)}_i := I \in R^{r \times r}$
- $Y^{(k)}_i := 0 \in R^r$
2.
消元阶段($k = 1, \cdots, \lceil \log s \rceil$)
:
- 计算子矩阵:
- $\alpha^{(k)}_i := -A^{(k - 1)}_i [B^{(k - 1)}
{i - 2^{k - 1}}]^{-1}$
- $\beta^{(k)}
i := -C^{(k - 1)}_i [B^{(k - 1)}
{i + 2^{k - 1}}]^{-1}$
- $A^{(k)}
i = \alpha^{(k)}_i \cdot A^{(k - 1)}
{i - 2^{k - 1}}$
- $C^{(k)}
i = \beta^{(k)}_i \cdot C^{(k - 1)}
{i + 2^{k - 1}}$
- $B^{(k)}
i = \alpha^{(k)}_i C^{(k - 1)}
{i - 2^{k - 1}} + B^{(k - 1)}
i + \beta^{(k)}_i A^{(k - 1)}
{i + 2^{k - 1}}$
- 计算向量:
- $Y^{(k)}
i = \alpha^{(k)}_i Y^{(k - 1)}
{i - 2^{k - 1}} + Y^{(k - 1)}
i + \beta^{(k)}_i Y^{(k - 1)}
{i + 2^{k - 1}}$
- 得到矩阵方程:
- $A^{(k)}
i X
{i - 2^k} + B^{(k)}
i X_i + C^{(k)}_i X
{i + 2^k} = Y^{(k)}
i$,$i = 1, \cdots, s$
3.
回代阶段($k = \lfloor \log s \rfloor, \cdots, 0$)
:
- 求解线性方程组:
- $B^{(k)}_i X_i = Y^{(k)}_i - A^{(k)}_i X
{i - 2^k} - C^{(k)}
i X
{i + 2^k}$,$i = 2^k, \cdots, s$,步长为 $2^{k + 1}$
该算法的时间复杂度分析如下:
|阶段|子矩阵或方程组数量|每个操作复杂度|总复杂度|
| ---- | ---- | ---- | ---- |
|消元阶段|$O(s) = O(n/r)$|$O(r^3)$|$O(nr^2)$|
|回代阶段|$O(s) = O(n/r)$|$O(r^3)$|$O(nr^2)$|
对于带状矩阵循环约简的并行实现,可以使用三对角系统的并行方法,不同之处在于将算术运算替换为矩阵运算,每个处理器的计算量增加,通信消息也更大。
2. 求解离散化的泊松方程
带状矩阵的循环约简算法适用于求解离散化的二维泊松方程。该线性方程组具有半带宽为 $N$ 的带状结构,使用高斯消元法会破坏矩阵的稀疏带状结构,而循环约简算法可以保留这种结构。
离散化泊松方程 $Az = d$ 表示为块三对角矩阵时,其块的形式为:
- $B^{(0)}_i := \frac{1}{h^2} B$,$i = 1, \cdots, N$
- $A^{(0)}_i := -\frac{1}{h^2} I$,$C^{(0)}_i := -\frac{1}{h^2} I$,$i = 1, \cdots, N$
算法步骤如下:
1.
初始化
:
- $B^{(0)} := B$
- $D^{(0)}
j := D_j$,$j = 1, \cdots, N$
- $D^{(k)}_j := 0$,$k = 0, \cdots, \lceil \log N \rceil$,$j \in Z \setminus {1, \cdots, N}$
- $Z_j := 0$,$j \in Z \setminus {1, \cdots, N}$
2.
消元阶段($k = 1, \cdots, \lfloor \log N \rfloor$)
:
- 计算矩阵和向量:
- $B^{(k)} = (B^{(k - 1)})^2 - 2I$
- $D^{(k)}_j = D^{(k - 1)}
{j - 2^{k - 1}} + B^{(k - 1)}D^{(k - 1)}
j + D^{(k - 1)}
{j + 2^{k - 1}}$
3.
回代阶段($k = \lfloor \log N \rfloor, \cdots, 0$)
:
- 求解线性方程组:
- $B^{(k)}Z_j = D^{(k)}
j + Z
{j - 2^k} + Z_{j + 2^k}$,$j = 2^k, \cdots, N$,步长为 $2^{k + 1}$
该算法的复杂度分析如下:
- 消元阶段:计算 $\lfloor \log N \rfloor$ 个矩阵和 $O(N)$ 个子向量,矩阵乘法复杂度为 $O(N^3)$,向量乘法复杂度为 $O(N^2)$,总复杂度为 $O(N^3 \log N)$。
- 回代阶段:求解 $O(N)$ 个线性方程组,若不利用矩阵特殊结构,复杂度为 $O(N^3)$。
离散化泊松方程的并行实现可参考带状矩阵循环约简的并行实现方法。
3. 线性方程组的迭代方法
直接方法对于大型稀疏矩阵可能不实用,迭代方法是另一种选择。迭代方法通过生成一系列近似向量 ${x^{(k)}}_{k = 1, 2, \cdots}$ 来逼近线性方程组 $Ax = b$ 的解 $x^*$。
3.1 标准迭代方法
标准迭代方法基于系数矩阵 $A$ 的分裂 $A = M - N$,其中 $M$ 为非奇异矩阵且其逆 $M^{-1}$ 容易计算。迭代公式为:
[
x^{(k + 1)} = Cx^{(k)} + d
]
其中 $C := M^{-1}N$ 为迭代矩阵,$d := M^{-1}b$。迭代方法收敛的充要条件是 $\lim_{k \to \infty} C^k = 0$,等价于迭代矩阵 $C$ 的谱半径 $\rho(C) < 1$。
常见的迭代方法有:
-
雅可比迭代(Jacobi Iteration)
:
- 矩阵分裂:$A = D - L - R$,其中 $D$ 为对角矩阵,$-L$ 为下三角矩阵(不含对角线),$-R$ 为上三角矩阵(不含对角线)。
- 迭代矩阵:$C_{Ja} := D^{-1}(L + R)$
- 分量形式:
[
x^{(k + 1)}
i = \frac{1}{a
{ii}} \left( b_i - \sum_{j = 1, j \neq i}^n a_{ij}x^{(k)}
j \right)
]
-
高斯 - 赛德尔迭代(Gauss - Seidel Iteration)
:
- 矩阵分裂:$A = D - L - R$
- 迭代矩阵:$C
{Ga} := (D - L)^{-1}R$
- 分量形式:
[
x^{(k + 1)}
i = \frac{1}{a
{ii}} \left( b_i - \sum_{j = 1}^{i - 1} a_{ij}x^{(k + 1)}
j - \sum
{j = i + 1}^n a_{ij}x^{(k)}
j \right)
]
-
JOR 方法(Jacobi Over - Relaxation)
:
- 矩阵分裂:$A = \frac{1}{\omega}D - L - R - \frac{1 - \omega}{\omega}D$
- 分量形式:
[
x^{(k + 1)}_i = \frac{\omega}{a
{ii}} \left( b_i - \sum_{j = 1, j \neq i}^n a_{ij}x^{(k)}
j \right) + (1 - \omega)x^{(k)}_i
]
-
SOR 方法(Successive Over - Relaxation)
:
- 对高斯 - 赛德尔迭代进行改进,引入松弛参数 $\omega$。
- 分量形式:
[
\begin{cases}
\hat{x}^{(k + 1)}_i = \frac{1}{a
{ii}} \left( b_i - \sum_{j = 1}^{i - 1} a_{ij}x^{(k + 1)}
j - \sum
{j = i + 1}^n a_{ij}x^{(k)}_j \right) \
x^{(k + 1)}_i = x^{(k)}_i + \omega(\hat{x}^{(k + 1)}_i - x^{(k)}_i)
\end{cases}
]
- 矩阵形式:$(D - \omega L)x^{(k + 1)} = (1 - \omega)Dx^{(k)} + \omega Rx^{(k)} + \omega b$
迭代方法的收敛性与矩阵 $A$ 的结构和松弛参数有关。例如,当矩阵 $A$ 为强对角占优时,雅可比和高斯 - 赛德尔迭代收敛;当 $A$ 对称正定且 $\omega \in (0, 2)$ 时,SOR 方法收敛。
使用矩阵运算实现迭代方法时,计算 $x^{(k + 1)}$ 包括矩阵 - 向量乘法和向量 - 向量加法。迭代方法通过相对误差控制收敛,即 $|x^{(k + 1)} - x^{(k)}| \leq \epsilon |x^{(k + 1)}|$,其中 $\epsilon$ 为预定义误差值。
4. 雅可比迭代的并行实现
雅可比迭代中,近似向量 $x^{(k + 1)}$ 的各个分量计算相互独立,可以并行执行。对于分布式内存的并行系统,需要进行通信以复制 $x^{(k)}$ 的所有分量。
以下是使用 C 语言和 MPI 实现雅可比迭代的代码:
int Parallel jacobi(int n, int p, int max it, float tol)
{
int i local, i global, j, i;
int n local, it num;
float x temp1[GLOB MAX], x temp2[GLOB MAX], local x[GLOB MAX];
float *x old, *x new, *temp;
n local = n/p; /* local blocksize */
MPI Allgather(local b, n local, MPI FLOAT, x temp1, n local,
MPI FLOAT, MPI COMM WORLD);
x new = x temp1;
x old = x temp2;
it num = 0;
do {
it num ++;
temp = x new; x new = x old; x old = temp;
for (i local = 0; i local < n local; i local++) {
i global = i local + me * n local;
local x[i local] = local b[i local];
for (j = 0; j < i global; j++)
local x[i local] = local x[i local] -
local A[i local][j] * x old[j];
for (j = i global+1 ; j < n; j++)
local x[i local] = local x[i local] -
local A[i local][j] * x old[j];
local x[i local] = local x[i local]/ local A[i local][i global];
}
MPI Allgather(local x, n local, MPI FLOAT, x new, n local,
MPI FLOAT, MPI COMM WORLD);
} while ((it num < max it) && (distance(x old,x new,n) >= tol));
output(x new,global x);
if (distance(x old, x new, n) < tol ) return 1;
else return 0;
}
该代码的流程如下:
1. 初始化局部块大小和迭代次数。
2. 通过
MPI_Allgather
函数收集局部向量。
3. 进入迭代循环,交替更新 $x^{(k)}$ 和 $x^{(k + 1)}$。
4. 计算每个局部分量的近似值。
5. 通过
MPI_Allgather
函数收集更新后的局部向量。
6. 检查收敛条件,若满足则输出结果并返回 1,否则继续迭代。
综上所述,线性方程组的求解方法有直接法和迭代法,不同方法适用于不同类型的矩阵。迭代方法中的雅可比迭代具有良好的并行性,通过并行实现可以提高计算效率。
线性方程组算法解析
5. 迭代方法的性能对比与分析
为了更清晰地对比不同迭代方法的性能,我们可以从多个方面进行分析,以下是一个简单的对比表格:
| 迭代方法 | 矩阵分裂方式 | 迭代矩阵 | 分量形式复杂度 | 收敛条件 | 特点 |
|---|---|---|---|---|---|
| 雅可比迭代 | (A = D - L - R) | (C_{Ja} := D^{-1}(L + R)) | 需使用 (x^{(k)}) 的所有分量计算 (x^{(k + 1)}_i) | 矩阵 (A) 强对角占优 | 各分量计算独立,并行性好,但收敛速度可能较慢 |
| 高斯 - 赛德尔迭代 | (A = D - L - R) | (C_{Ga} := (D - L)^{-1}R) | 利用已计算的 (x^{(k + 1)}_j(j < i)) 计算 (x^{(k + 1)}_i) | 矩阵 (A) 强对角占优 | 通常比雅可比迭代收敛快,但并行性受限 |
| JOR 方法 | (A = \frac{1}{\omega}D - L - R - \frac{1 - \omega}{\omega}D) | - | 引入松弛参数 (\omega) 改进雅可比迭代 | - | 通过调整 (\omega) 可能改善收敛速度 |
| SOR 方法 | (A = \frac{1}{\omega}D - L - R - \frac{1 - \omega}{\omega}D) | - | 对高斯 - 赛德尔迭代引入松弛参数 (\omega) | (A) 对称正定且 (\omega \in (0, 2)) | 收敛速度可能更快,但参数选择影响大 |
从表格中可以看出,不同迭代方法在矩阵分裂、迭代矩阵、收敛条件和特点上都有所不同。在实际应用中,需要根据矩阵的具体性质和问题的要求选择合适的迭代方法。
6. 线性方程组求解方法的选择建议
选择合适的线性方程组求解方法对于提高计算效率和准确性至关重要。以下是一些选择建议的流程图:
graph TD;
A[矩阵类型] --> B{大型稀疏矩阵};
B -- 是 --> C{是否可利用特殊结构};
C -- 是 --> D[带状矩阵循环约简算法];
C -- 否 --> E[迭代方法];
B -- 否 --> F[直接方法];
E --> G{对收敛速度要求};
G -- 低 --> H[雅可比迭代];
G -- 中 --> I[高斯 - 赛德尔迭代];
G -- 高 --> J[SOR 方法];
根据流程图,我们可以总结出以下选择步骤:
1. 判断矩阵是否为大型稀疏矩阵。
- 如果是,检查是否可以利用矩阵的特殊结构。
- 若可以,如带状矩阵,使用带状矩阵循环约简算法。
- 若不可以,考虑使用迭代方法。
- 对收敛速度要求低,选择雅可比迭代。
- 对收敛速度要求中等,选择高斯 - 赛德尔迭代。
- 对收敛速度要求高,选择 SOR 方法。
- 如果不是大型稀疏矩阵,使用直接方法。
7. 并行实现的进一步优化思路
虽然雅可比迭代的并行实现已经展示了一定的优势,但仍然有进一步优化的空间。以下是一些优化思路:
1.
减少通信开销
:在分布式内存系统中,通信开销是影响并行效率的重要因素。可以通过优化通信模式,如采用异步通信,减少处理器的空闲等待时间。
2.
负载均衡
:确保每个处理器的计算负载均匀,避免出现某些处理器空闲而其他处理器忙碌的情况。可以通过合理划分矩阵和向量来实现负载均衡。
3.
使用更高效的矩阵运算库
:利用现有的高效矩阵运算库,如 BLAS(Basic Linear Algebra Subprograms),可以提高矩阵 - 向量乘法和向量 - 向量加法的计算速度。
8. 总结
本文详细介绍了线性方程组的多种求解方法,包括带状矩阵的循环约简算法、离散化泊松方程的求解、迭代方法(雅可比迭代、高斯 - 赛德尔迭代、JOR 方法和 SOR 方法)以及雅可比迭代的并行实现。通过对这些方法的分析和对比,我们可以得出以下结论:
1. 直接方法适用于小型矩阵或可以利用特殊结构的矩阵,如带状矩阵的循环约简算法。
2. 迭代方法适用于大型稀疏矩阵,不同迭代方法在收敛速度和并行性上各有优劣。
3. 雅可比迭代具有良好的并行性,通过并行实现可以显著提高计算效率。
在实际应用中,需要根据矩阵的性质、问题的要求和计算资源等因素选择合适的求解方法,并通过优化并行实现进一步提高计算性能。
希望本文的内容能够帮助读者更好地理解和应用线性方程组的求解方法。如果读者在实际使用过程中遇到问题,可以根据本文提供的方法和思路进行分析和解决。
超级会员免费看
1347

被折叠的 条评论
为什么被折叠?



