盛最多水的容器 接雨水【基础算法精讲 02】

文章讲述了如何使用双指针策略解决LeetCode上的“接雨水”问题,通过比较左右边界的高度和当前位置的桶高度,计算最多能接的雨水面积。介绍了两种方法,一种是存储前缀和后缀最大值,另一种是在线遍历过程中动态更新。
摘要由CSDN通过智能技术生成

盛雨水最多的容器

链接 : 


11 盛最多水的容器

思路 : 

双指针 :

1.对于两条确定的边界,l和r,取中间的线m与r组成容器,如果m的高度>l的高度,那么整个容器的长度会减小,如果低于l的高度,那么不仅高度可能会减小,长度也一定会减小;

2.取l=0,r=n-1,循环遍历答案即可;

代码 (c++): 

class Solution {
public:
    int maxArea(vector<int>& height) {
        int n = height.size();
        int i=0,j=n-1,ans=0;
        while(i < j){
            ans = height[i] < height[j] ? 
                max(ans, (j - i) * height[i++]): 
                max(ans, (j - i) * height[j--]); 
        }
        return ans;
    }
};

代码(python) : 

class Solution:
    def maxArea(self, height: List[int]) -> int:
        ans = 0
        l = 0
        r = len(height)-1
        while l<r:
            s = (r-l)*min(height[l],height[r])
            ans = max(ans,s)
            if height[l] < height[r]:
                l += 1
            else :
                r -= 1
        return ans

接雨水

链接 : 

https://leetcode.cn/problems/trapping-rain-water/

思路 : 

假设每个位置都是一个宽度为一的桶;

对于每个位置能够存多少水,取决于左边和右边的最大高度;

法一 : 

用两个数组来表示 前缀 和 后缀的最大值;

详见代码一

时间复杂度  :  O(n)

空间复杂度  : O(n)

法二 : 

双指针 : 

取l=0,r=n-1;

一边遍历一边更新前缀的最大值pre_max 和 后缀的最大值suf_max!

时间复杂度  :  O(n)

空间复杂度  : O(1)

详见代码二

代码 :

代码一 : 

python :

class Solution:
    def trap(self, height: List[int]) -> int:
        n = len(height)
        #  前缀最大值数组
        fs = [0] * n
        fs[0] = height[0]
        for i in range(1,n):
            fs[i] = max(fs[i-1],height[i])
        
        # 后缀和最大值数组
        es = [0] * n
        es[-1] = height[n-1]
        for i in range(n-2,-1,-1):
            es[i] = max(es[i+1],height[i])

        ans = 0
        for h , f , e in zip(height,fs,es):
            ans += min(f,e)-h
        
        return ans

代码二 : 

python : 

class Solution:
    def trap(self, height: List[int]) -> int:
        n = len(height)
        l = 0
        r = n - 1
        ans = 0
        pre_max = 0
        suf_max = 0

        while l<=r:
            pre_max = max(pre_max,height[l])
            suf_max = max(suf_max,height[r])
            if pre_max < suf_max : 
                ans += pre_max-height[l]
                l += 1
            else :
                ans += suf_max - height[r]
                r -= 1

        return ans

c++ : 

class Solution {
public:
    int trap(vector<int>& a) {
    
    int len = a.size();
    int lmax=a[0],rmax=a[len-1];
    int l=1,r=len-2;
    int ans=0;
    while(l<=r){
    	if(lmax < rmax){
    		ans += max(min(lmax,rmax)-a[l],0);
			lmax = max(lmax,a[l]);
			l++; 
		}
		else{
		  ans += max(min(lmax,rmax)-a[r],0);
		  rmax = max(rmax,a[r]);
		  r--;
		}
	}
    return ans;
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值