计算机视觉领域的发展与学习指南
一、计算机视觉的发展与第四版更新
计算机视觉自 20 世纪 90 年代以来取得了飞速发展。1990 年第一版问世后,在随后的二十年里,该领域的发展速度不断加快。许多在第一版中几乎未被提及的主题,如数学形态学、3 - D 视觉、不变性、运动分析、目标跟踪、人工神经网络、纹理分析、X 射线检测、异物检测和稳健统计等,都在后续版本中得到了充分体现。
第四版的更新幅度非常大,新增了许多关于上述主题的章节或附录,并与现有内容进行了精心整合。其中,大部分新内容集中在第三部分和第四部分。由于 3 - D 视觉及其应用的研究工作增长迅猛,原本关于 3 - D 视觉的单章内容扩展为涵盖 3 - D 视觉和运动的五章内容,构成了第三部分;同时,第四部分还增加了两章关于监控和车载视觉系统的内容。这些变化非常显著,甚至书的标题也进行了修改以反映这些变化。
目前,计算机视觉已达到了较高的成熟度,变得更加严谨、可靠、通用,并且借助现有的改进硬件设施(如 FPGA 和 GPU 解决方案)能够实现实时性能。这使得更多的从业者能够将其应用于实际的重要领域,且遇到的实际困难也更少。第四版旨在从根本上反映这一全新且令人兴奋的发展态势。
二、不同层次学生的学习建议
对于电子工程或计算机科学专业的本科大四学生,一门典型的视觉课程可能会涵盖第 1 - 10 章以及第 14、15 章的大部分内容,同时根据需求从其他章节中选择部分内容。而对于攻读硕士或博士学位的研究型学生,合适的课程可能会深入涵盖第三部分,包括第四部分的一些章节,并在图像分析系统上进行大量的实践练习。不过,具体的学习内容很大程度上取决于每个学生所从事的研究项目。在这个阶段,相关资料更像
超级会员免费看
订阅专栏 解锁全文

被折叠的 条评论
为什么被折叠?



