UNet跑自己的VOC格式数据集——超好用!Pytorch版本(自用笔记)

部署运行你感兴趣的模型镜像

源码:https://github.com/bubbliiiing/unet-pytorch
参考的blog:https://blog.csdn.net/weixin_44791964/article/details/108866828
这个源码里的注释超级超级详细,我哭死。。。。

默认已经准备好了自己的VOC格式的数据集。

用train.py训练,get_miou.py预测就行了。
注意,如果要指定GPU的id的话,可以在import torch前面加上这句,数字就是id

os.environ["CUDA_VISIBLE_DEVICES"] = "1"
import torch

训练:
修改train.py文件:
是否使用Cuda,num_classes类别数,主干网络,model_path改为自己在readme里面下载好的权值文件路径,注意修改save_dir路径自己要在logs下建一个当前项目的子文件夹(要不然训练多了会混起来),数据集路径,dice_loss和focal_loss按照注释修改,还有一些训练参数自己按需修改。
预测mask:
因为我要预测多张图,predict.py里面还得自己改代码写遍历,后面发现get_miou.py里有现成的。设置miou_mode为1代表仅仅获得预测结果。
预测一般要改的:
get_miou.py里:miou_mode、分类数、种类、VOC路径、txt文件路径、输出mask的路径。
unet.py里:model_path指向./logs文件夹下的权值文件,num_classes,具体要看自己要更改哪些参数

您可能感兴趣的与本文相关的镜像

PyTorch 2.7

PyTorch 2.7

PyTorch
Cuda

PyTorch 是一个开源的 Python 机器学习库,基于 Torch 库,底层由 C++ 实现,应用于人工智能领域,如计算机视觉和自然语言处理

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值