论文解读:词向量作为隐式矩阵分解(SGNS)

1. 前言

解读SGNS(skip-gram with negative-sample)的训练方法。

1.1 skip-gram 模型:
利用当前时刻的词,预测它上下文的内容

在这里插入图片描述
公式:
对于序列 w1, w2, …, wT, Skip-gram最大化平均的log 概率。
在这里插入图片描述
p(w|w_t) 使用softmax函数:在这里插入图片描述
这里, W是词汇表中单词的数量。

1.2 Skip-gram + negative sampling:
从上面可以看到,如果直接使用 softmax是不靠谱的, 因为计算量和词汇表的数量W有关,而一般词汇表大小为 1 0 5

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

rosefunR

你的赞赏是我创作的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值