机器学习对异常值处理方法

机器学习对异常值的处理方法

背景

实际应用中,数据往往存在异常值,面对异常值,我们主要有几种思路:把异常值去掉,用其他数值代替异常值,对异常值进行变换。

1.异常值检测方法

1.1 box plot

使用分位数Q1 、Q3,设置控制线,在控制线外的就当做异常值。

Interquartile range is given by, IQR = Q3 — Q1

Upper limit = Q3+1.5*IQR

Lower limit = Q1–1.5*IQR

2.异常值处理方法

2.1 Winsorizing

这种方法把值(0.05,0.95)外的值使用这个区间的最小或最大值代替。

2.2 去除法

使用IQR或者其他方法检测异常值后,直接去除

2.3 变换法

使用 log 变换,改变原来变量的分布。

几种处理方法效果比较:

在这里插入图片描述


reference

  1. 异常值处理方法;
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

rosefunR

你的赞赏是我创作的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值