516. Paint House II
There are a row of n
houses, each house can be painted with one of the k
colors. The cost of painting each house with a certain color is different. You have to paint all the houses such that no two adjacent houses have the same color.
The cost of painting each house with a certain color is represented by a n
x k
cost matrix. For example, costs[0][0]
is the cost of painting house 0
with color 0
; costs[1][2]
is the cost of painting house 1
with color 2
, and so on... Find the minimum cost to paint all houses.
Example
Example 1
Input:
costs = [[14,2,11],[11,14,5],[14,3,10]]
Output: 10
Explanation:
The three house use color [1,2,1] for each house. The total cost is 10.
Example 2
Input:
costs = [[5]]
Output: 5
Explanation:
There is only one color and one house.
Challenge
Could you solve it in O(nk)?
Notice
All costs are positive integers.
Input test data (one parameter per line)How to understand a testcase?
解法1:DP。第3层循环遍历colors,在跟当前color不同的color中找最小值。时间复杂度O(n^3)和空间复杂度O(n^2)都太高。
class Solution {
public:
/**
* @param costs: n x k cost matrix
* @return: an integer, the minimum cost to paint all houses
*/
int minCostII(vector<vector<int>> &costs) {
int n = costs.size();
if (n == 0) return 0;
int colors = costs[0].size();
//dp[i][j] is the minimum cost when ith house uses color j
vector<vector<int>> dp(n, vector<int>(n, INT_MAX));
for (int i = 0; i < colors; ++i) {
dp[0][i] = costs[0][i];
}
for (int i = 1; i < n; ++i) {
for (int j = 0; j < colors; ++j) {
for (int k = 0; k < colors; ++k) {
if (k != j) dp[i][j] = min(dp[i][j], dp[i - 1][k] + costs[i][j]);
}
}
}
int result = INT_MAX;
for (int i = 0; i < colors; ++i) {
result = min(result, dp[n - 1][i]);
}
return result;
}
};
解法2:改进版。只需保存前次节点的最小值和第二小的值和其对应的colors即可,如果当前color和前次节点的最小值对应的color一样,则取前次节点的第二小的值,否则取前次节点的最小值。
时间复杂度O(n^2),空间复杂度还是O(n^2)。
class Solution {
public:
/**
* @param costs: n x k cost matrix
* @return: an integer, the minimum cost to paint all houses
*/
int minCostII(vector<vector<int>> &costs) {
int n = costs.size();
if (n == 0) return 0;
int colors = costs[0].size();
if (colors <= 1) return 0;
//dp[i][j] is the minimum cost when ith house uses color j
vector<vector<int>> dp(n, vector<int>(n, INT_MAX));
int min1 = 0, min2 = 1;
if (costs[0][0] > costs[0][1]) {
min1 = 1;
min2 = 0;
}
dp[0][0] = costs[0][0];
dp[0][1] = costs[0][1];
for (int i = 2; i < colors; ++i) {
dp[0][i] = costs[0][i];
if (dp[0][i] < dp[0][min1]) {
min2 = min1;
min1 = i;
} else if (dp[0][i] < dp[0][min2]) {
min2 = i;
}
}
for (int i = 1; i < n; ++i) {
int last1 = min1, last2 = min2;
min1 = -1; min2 = -1;
for (int j = 0; j < colors; ++j) {
if (j == last1) {
dp[i][j] = dp[i - 1][last2] + costs[i][j];
} else {
dp[i][j] = dp[i - 1][last1] + costs[i][j];
}
if (min1 < 0 || dp[i][j] < dp[i][min1]) {
min2 = min1;
min1 = j;
} else if (min2 < 0 || dp[i][j] < dp[i][min2]) {
min2 = j;
}
}
}
return dp[n - 1][min1];
}
};
解法3:类似解法2,但不用二维数组了,因为只需要保存前次节点的4个值即可(min1_id, min2_id, min1_v, min2_v)。
时间复杂度O(n^2),空间复杂度O(1)。
class Solution {
public:
/**
* @param costs: n x k cost matrix
* @return: an integer, the minimum cost to paint all houses
*/
int minCostII(vector<vector<int>> &costs) {
int n = costs.size();
if (n == 0) return 0;
int colors = costs[0].size();
if (colors <= 1) return 0;
int min1_id = 0, min1_v = costs[0][0];
int min2_id = 1, min2_v = costs[0][1];
if (costs[0][0] > costs[0][1]) {
min1_id = 1; min1_v = costs[0][1];
min2_id = 0; min2_v = costs[0][0];
}
for (int i = 2; i < colors; ++i) {
if (costs[0][i] < costs[0][min1_id]) {
min2_id = min1_id; min2_v = min1_v;
min1_id = i; min1_v = costs[0][i];
} else if (costs[0][i] < costs[0][min2_id]) {
min2_id = i; min2_v = costs[0][i];
}
}
for (int i = 1; i < n; ++i) {
int last1_id = min1_id, last1_v = min1_v;
int last2_id = min2_id, last2_v = min2_v;
min1_id = -1; min2_id = -1;
for (int j = 0; j < colors; ++j) {
int curr_v;
if (j == last1_id) {
curr_v = last2_v + costs[i][j];
} else {
curr_v = last1_v + costs[i][j];
}
if (min1_id < 0 || curr_v < min1_v) {
min2_id = min1_id; min2_v = min1_v;
min1_id = j; min1_v = curr_v;
} else if (min2_id < 0 || curr_v < min2_v) {
min2_id = j;
min2_v = curr_v;
}
}
}
return min1_v;
}
};