- Backpack
Given n items with size Ai, an integer m denotes the size of a backpack. How full you can fill this backpack?
Example
Example 1:
Input: [3,4,8,5], backpack size=10
Output: 9
Example 2:
Input: [2,3,5,7], backpack size=12
Output: 12
Challenge
O(n x m) time and O(m) memory.
O(n x m) memory is also acceptable if you do not know how to optimize memory.
Notice
You can not divide any item into small pieces.
解法1:
经典01背包问题。
DP solution。
Time complexity O(nm),n is the # of items, m is the packet size。
Space complexity O(m)。
注意:k循环必须从大到小 (对01背包和重复背包)。而如果是完全背包的话,可以是从小到大,从而实现优化。
class Solution {
public:
/**
* @param m: An integer m denotes the size of a backpack
* @param A: Given n items with size A[i]
* @return: The maximum size
*/
int backPack(int m, vector<int> &A) {
int n = A.size();
vector<int> dp(m + 1, 0);
for (int i = 0; i < n; ++i) {
for (int k = m; k >= A[i]; --k) { //必须是从大到小
dp[k] = max(dp[k], dp[k - A[i]] + A[i]);
}
}
return dp[m];
}
};