LintCode 92: Backpack (经典01背包问题)

  1. Backpack

Given n items with size Ai, an integer m denotes the size of a backpack. How full you can fill this backpack?

Example
Example 1:
Input: [3,4,8,5], backpack size=10
Output: 9

Example 2:
Input: [2,3,5,7], backpack size=12
Output: 12

Challenge
O(n x m) time and O(m) memory.

O(n x m) memory is also acceptable if you do not know how to optimize memory.

Notice
You can not divide any item into small pieces.

解法1:
经典01背包问题。
DP solution。
Time complexity O(nm),n is the # of items, m is the packet size。
Space complexity O(m)。
注意:k循环必须从大到小 (对01背包和重复背包)。而如果是完全背包的话,可以是从小到大,从而实现优化。


class Solution {
public:
    /**
     * @param m: An integer m denotes the size of a backpack
     * @param A: Given n items with size A[i]
     * @return: The maximum size
     */
    int backPack(int m, vector<int> &A) {
        int n = A.size();
        vector<int> dp(m + 1, 0);
        
        for (int i = 0; i < n; ++i) {
            for (int k = m; k >= A[i]; --k) {    //必须是从大到小
                dp[k] = max(dp[k], dp[k - A[i]] + A[i]);
            }
        }
        return dp[m];
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值