LintCode 2: Trialing Zeros

原题如下:
2. Trailing Zeros
Write an algorithm which computes the number of trailing zeros in n factorial.

Example
11! = 39916800, so the out should be 2

Challenge
O(log N) time

这题挺有意思。因为阶乘里面的0都是由2*5得来的,所以看有多少个(2,5)构成的pair就可以了。而我们知道2的数目远远多于5的数目,所以只看5的数目就可以了。

比如说105的 阶乘,里面有多少个5呢? 首先5,10,15,20,…105这里面每个都至少有1个5,而且有些有2个,3个, 甚至更多。我们用个循环把它们都加起来就可以了。

class Solution {
public:
    /*
     * @param n: A long integer
     * @return: An integer, denote the number of trailing zeros in n!
     */
    long long trailingZeros(long long n) {

        long long count = 0; //count of 5   
        while (n) {
            n /= 5;
            count += n;
        }
        
        return count;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值