辗转相除法.
当两个数都较大时,采用辗转相除法比较方便.其方法是:
以小数除大数,如果能整除,那么小数就是所求的最大公约数.否则就用余数来除刚才的除数;再用这新除法的余数去除刚才的余数.依此类推,直到一个除法能够整除,这时作为除数的数就是所求的最大公约数.
例如:求4453和5767的最大公约数时,可作如下除法.
5767÷4453=1余1314
4453÷1314=3余511
1314÷511=2余292
511÷292=1余219
292÷219=1余73
219÷73=3
于是得知,5767和4453的最大公约数是73.
辗转相除法适用比较广,比短除法要好得多,它能保证求出任意两个数的最大公约数.
/// <summary>
/// 辗转相除法:求两个数的最大公约数
/// </summary>
/// <param name="num1"></param>
/// <param name="num2"></param>
/// <returns></returns>
private static int Gcd(int num1, int num2)
{
int gcd=0;
if (num1==num2)
{
gcd = num1;
}
if (num1>num2)
{
int tmp = num1;
num1 = num2;
num2 = tmp;
}
if (num2 % num1 == 0)
{
gcd = num1;
}
else
{
int tmp = num1;
num1 = num2 % num1;
num2 = tmp;
gcd = Gcd(num1, num2);
}
return gcd;
}
P.S: 最小公倍数 = 二数中的大数/最大公约数)*小数