已知二叉树的前序和中序,重建二叉树_笔记

题目如下:
输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树。假设输入的前序遍历和中序遍历的结果中都不含重复的数字。例如输入前序遍历序列{1,2,4,7,3,5,6,8}和中序遍历序列{4,7,2,1,5,3,8,6},则重建二叉树并返回。

分析

二叉树的前序遍历顺序是:先访问根节点,然后前序遍历左子树,再前序遍历右子树。

中序遍历顺序是:中序遍历根节点的左子树,然后是访问根节点,最后中序遍历右子树。

1、二叉树的前序遍历序列一定是该树的根节点

2、中序遍历序列中根节点前面一定是该树的左子树,后面是该树的右子树

从上面可知,题目中前序遍历的第一个节点{1}一定是这棵二叉树的根节点,根据中序遍历序列,可以发现中序遍历序列中节点{1}之前的{4,7,2}是这棵二叉树的左子树,{5,3,8,6}是这棵二叉树的右子树。然后,对于左子树,递归地把前序子序列{2,4,7}和中序子序列{4,7,2}看成新的前序遍历和中序遍历序列。此时,对于这两个序列,该子树的根节点是{2},该子树的左子树为{4,7}、右子树为空,如此递归下去(即把当前子树当做树,又根据上述步骤分析)。{5,3,8,6}这棵右子树的分析也是这样。

代码如下:

class TreeNode {
	     int val;
	      TreeNode left;
	      TreeNode right;
	      TreeNode(int x) { val = x; }
	  }
public class TestRecoverBinaryTree {
	public TreeNode reConstructBinaryTree(int [] preOrder,int [] inOrder) 
	{
		int pLen = preOrder.length;
		int iLen = inOrder.length;
		if(pLen==0 && iLen==0)
        {
            return null;
        }
        return  btConstruct( preOrder, inOrder, 0, pLen-1,0, iLen-1);
    }
	//构建方法,pStart和pEnd分别是前序遍历序列数组的第一个元素和最后一个元素;
	//iStart和iEnd分别是中序遍历序列数组的第一个元素和最后一个元素。
	public TreeNode btConstruct(int[] preOrder, int[] inOrder, int pStart, int pEnd,int iStart,int iEnd)
	{
		//建立根节点
		TreeNode tree = new TreeNode(preOrder[pStart]);
		tree.left = null;
		tree.right = null;
		if(pStart == pEnd && iStart == iEnd)
		{
			return tree;
		}
		int root = 0;
		//找中序遍历中的根节点
		for(root=iStart; root<iEnd; root++)
		{
			if(preOrder[pStart] == inOrder[root])
			{
				break;
			}
		}
		//划分左右子树
		int leftLength = root - iStart;//左子树
		int rightLength = iEnd - root;//右子树
		//遍历左子树
		if(leftLength>0)
		{
			tree.left = btConstruct(preOrder, inOrder,  pStart+1,  pStart+leftLength, iStart, root-1);
		}
		//遍历右子树
		if(rightLength>0)
		{
			tree.right = btConstruct(preOrder, inOrder,  pStart+leftLength+1,  pEnd, root+1, iEnd);
		}
		return tree;
	}
}

注意

已知前序和中序遍历,可以确定一棵二叉树。已知中序和后序遍历,可以确定一棵二叉树。但是,已知前序和后序遍历,不能确定一棵二叉树。







评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值