【教程】已知二叉树的先序序列和中序序列构造二叉树

这篇博客介绍了如何利用二叉树的先序和中序序列来构造二叉树。首先,通过先序序列确定根节点,然后在中序序列中找到根节点的位置,从而划分左右子树。接着,递归地对左右子树进行相同的操作,直至所有节点都被处理。具体步骤包括分析左子树DGB和右子树ECF,最终构建完整的二叉树结构。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原理:
二叉树的先序序列遍历过程是:根→左→右。中序序列遍历过程是:左→根→右。
已知先序序列可以唯一确定根结点,即:先序序列的第一个结点就是根节点。确定完根结点之后,根据中序序列可以确定根结点的左子树和右子树,即:在中序序列中根结点的左边为根结点的左子树,根结点的右边为根结点的右子树,


例题:
已知某二叉树的先序序列为ABDGCEF,中序序列为DGBAECF,则构造该二叉树的过程如下图。


在这里插入图片描述


详细过程如下:
step1:先序序列为ABDGCEF,中序序列为DGBAECF
            可以得到:A是该二叉树根节点,DGB是A结点的左子树,ECF是A结点的右子树。
            如图:
在这里插入图片描述
step2:先看左子树:DGB,分析它。
            从二叉树的先序序列 ABDGCEF 中找到DGB按照二叉树的先序序列中的顺序写出来,即:BDG
            它就是左子树DGB的先序序列。再从二叉树的中序序列 DGBAECF 中找到DGB按照二叉树的中
            序序列中的顺序写出来,即:DGB它就是左子树DGB的中序序列。
            于是有,左子树DGB的先序序列为:BDG,中序序列为:DGB
            可以得到:B是根结点,DG是B结点的左子树
            如图:
在这里插入图片描述
step3:再看左子树:DG,分析它。
            从二叉树的先序序列 ABDGCEF 中找到DG按照二叉树的先序序列中的顺序写出来,即:DG它就
            是左子树DG的先序序列。再从二叉树的中序序列 DGBAECF 中找到DG按照二叉树的中序序列中
            的顺序写出来,即:DG它就是左子树DG的中序序列。
            于是有,左子树DG的先序序列为:DG,中序序列为:DG
            可以得到:D是根结点,G是D结点的右子树。
            如图:
在这里插入图片描述
至此A结点的左子树分析完毕,接下来是右子树。


step1:从二叉树的先序序列 ABDGCEF 中找到ECF按照二叉树的先序序列中的顺序写出来,即:CEF它
            就是右子树ECF的先序序列。再从二叉树的中序序列 DGBAECF 中找到ECF按照二叉树的中序序
            列中的顺序写出来,即:ECF它就是右子树ECF的中序序列。
            于是有,右子树ECF的先序序列为:CEF,中序序列为:ECF
            可以得到:C是根结点,E是C结点的左子树,F是C结点的右子树
            如图:
在这里插入图片描述
以上就是根据先序序列和中序序列成功构造出的二叉树。

相关练习请转到:【例题】

评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

立志Java工程师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值