Openmmlab AI实战营打卡-第6课

今天是语义分割方面的学习。
语义分割:对每一个像素进行细粒度的分类

基本思路1:按颜色分类,

这是因为物体内部颜色相近,物体交界颜色变化
存在问题:不同物体颜色可能相近,物体内也会包含多种颜色

基本思路2:逐像素分类

利用滑窗和CNN进行分类。
优势:可以充分利用已有的图像分类模型
问题:效率低下,重复区域重复计算卷积
目标检测属于实例分割中的一种。

全连接层的卷积化:

把特征图拉平,使其向量化,并将这些向量放在一起,全连接层的每一个神经元就可以变成一个卷积核。
全连接网络的卷积化:分类网络转成了分割网络
VGG:降采样层,
分割网络会逐渐变小
问题:图像分类模型使用降采样层(步长卷积或池化)获得高层次特征,导致全卷积网络输出尺寸小于原图,而分割要求同尺寸输出

怎么小变大:升采样

解决方法:
对预测的分割图升采样,恢复原图分辨率,升采样方案:

  1. 双线性插值
  2. 转置卷积:可学习的升采样层
    双线性插值的方法是我本科的时候做毕设用的方法。
    转置卷积:升卷积 Upconvolution、反卷积 Deconvolution
    将卷积运算表示成矩阵乘法,只在形状上有互逆的关系,数值结果没有互逆关系
    在这里插入图片描述
    问题:高层特征经过多次降采样,细节丢失严重。
    先降采样,再升采样
    低层次和高层次特征图结合
    语义分割必读:UNet(逐级融合高低层次特)
上下文信息:

图像周围的内容(也称上下文)可以帮助我们做出更准确的判断

如何在预测过程中使用上下文信息?
方案:增加感受野更大的网络分支,将上下文信息导入局部预测中
PSPNet 2016:
(a) 对特征图进行不同尺度的池化,得到不同尺度的上下文特征
(b) 上下文特征经过通道压缩和空间上采样之后拼接回原特征图 → 同时包含局部和上下文特征
© 基于融合的特征产生预测图

DEEPLAB 空洞卷积

DeepLab 是语义分割的又一系列工作,其主要贡献为:
• 使用空洞卷积解决网络中的下采样问题
• 使用条件随机场 CRF 作为后处理手段,精细化分割图
• 使用多尺度的空洞卷积(ASPP 模块)捕捉上下文信息
图像分类模型中的下采样层使输出尺寸变小
如果将池化层和卷积中的步长去掉:
• 可以减少下采样的次数;
• 特征图就会变大,需要对应增大卷积核,以维持相同的感受野,但会增加大量参数
• 使用空洞卷积(Dilated Convolution/Atrous Convolution),在不增加参数的情况下增大感受野

DeepLab 在图像分类网络的基础上做了修改:
• 去除分类模型中的后半部分的下采样层
• 后续的卷积层改为膨胀卷积,并且逐步增加rate来维持原网络的感受野

条件随机场

模型直接输出的分割图较为粗糙,尤其在物体边界处不能产生很好的分割结果。
DeepLab v1&v2 使用条件随机场 (CRF) 作为后处理手段,结合原图颜色信息和神经网络预测的类
别得到精细化分割结果。

多尺度空洞卷积

空间金字塔池化
PSPNet 使用不同尺度的池化来获取不同尺度的上下文信息
DeepLab v2 & v3 使用不同尺度的空洞卷积达到类似的效果
特征拼接后进行预测
池化获取全局特征
更大的感受野 更多的上下文特征

评估指标:基于交并集
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值