基于多时间尺度的灵活性资源优化配置 多时间尺度;模型预测控制;日内滚动优化

该文探讨了一种考虑负荷需求响应的微网优化调度策略,利用多时间尺度方法,包括日前优化调度和日内滚动优化,以降低成本和减少调峰压力。研究对象为包含多种能源的微网系统,通过模型预测控制和日内滚动优化,确定了各分布式电源的最优功率曲线和运行成本。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于多时间尺度的灵活性资源优化配置
关键词:多时间尺度;模型预测控制;日内滚动优化;

  1. 程序:matlab-yalmip-cplex
    2.设备:以包含风力场、光伏电站、微型燃气轮机、蓄电池、余热锅炉、热泵、储热罐和电 热负荷的多能源微网系统为研究对象,构建了各微源的数学模型。
    3.内容:提出一种多时间尺度下考虑负荷需求响应机制的微网优化调度策略。
    在日前阶段,以源-荷日前预测数据和分时电价数据为基础,利用价格型需求响应机制引导用户积极参与负荷调整,从而平滑了负荷曲线,减小了系统调峰压力,在此基础上,以微网运维成本、购电成本、购气成本和污染物排放惩罚成本之和最小为优化目标建立了日前优化调度模型;在日内阶段,为了进一步提高调度精度,以各分布式电源日内-日前功率方差最小为目标函数,建立微网日内滚动优化调度模型。
    最后得到日前和日内不同阶段下各分布式电源的最优功率曲线以及运行成本值。
    这段程序是一个电力系统调度优化程序,主要用于优化电力系统的电负荷和热负荷的分配和调度。下面我将对程序进行详细的解释和分析。

    YID:1957692042272047

请添加图片描述

首先,程序开始的部分是一些数据的初始化,包括电负荷、热负荷、风电出力、光伏出力、

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值