一、定义
堆(heap),也叫优先队列(priority queue),取出元素的顺序是依照元素的优先权(关键字)大小,而不是元素进入队列的先后顺序,也就是说堆的排序是按照自定义的顺序(优先权)。
比如说,打印机在打印不同文件时,并不是按照文件的先后顺序来打印的,而是由文件是否急需来决定这些文件的打印顺序,这样的模型就是堆模型。
堆最主要的操作有插入(insert)和删除(deleteMax/deleteMin)两种操作,堆有多种实现方式,比如说数组或链表,也可以采用完全二叉树存储结构来实现,完全二叉树非常适合实现堆,所以提到堆,默认就是树结构,这也是完全二叉树的一个应用,所以这里只讲二叉树实现的C语言代码。如下图所示,堆可分为最大堆和最小堆,最大堆是指子结点的值小于父结点,最小堆是值子结点的值大于父结点,注意,兄弟结点之间没有优先权排序的关系。
以最大堆为例,12在第一个位置,11在第二个位置,9在第三个位置……
二、C语言实现
这里以最大堆的实现为例。
//头文件,文件名:MaxHeap.h
#ifndef MAXHEAP_H_INCLUDED
#define MAXHEAP_H_INCLUDED
struct HeapStruct{
//存放堆元素的数组,该数组下标为0的位置不存放堆元素,仅存放哨兵元素
int* heapArr;
int size;//存放堆的当前元素的数目
int capacity;//存放该堆的容量
};
typedef struct HeapStruct* MaxHeap;
MaxHeap createMaxHeap(int);
void insert(int, MaxHeap);
int find(int, MaxHeap);
#endif // MAXHEAP_H_INCLUDED
//堆的具体实现文件,文件名:MaxHeap.c
#include <stdio.h>
#include <stdlib.h>
#include "MaxHeap.h"
MaxHeap createMaxHeap(int maxSize){
MaxHeap maxHeap = (MaxHeap)malloc(sizeof(struct HeapStruct));
maxHeap->heapArr = (int*)malloc(sizeof(int)*(maxSize+1));
maxHeap->size = 0;
maxHeap->capacity = maxSize;
maxHeap->heapArr[0] = 0;//heapArr数组不存放堆的元素,只存放堆中的最大元素
return maxHeap;
}
/*
查找到元素则返回元素在堆中的位置,否则返回0
*/
int find(int element, MaxHeap maxHeap){
if(!maxHeap){
printf("该堆不存在\n");
return 0;
}
int i = 1;
for(;i<=maxHeap->size;i++){
if(element == maxHeap->heapArr[i]){
return i;
}
}
return 0;
}
/*
朝一个堆里插入元素,
原理:先在尾部插入元素,然后将该元素与父结点比较,如果父结点小于该元素,则两个元素互换位置,
这叫采用上滤(percolate up)的方式搜索。
*/
void insert(int element, MaxHeap maxHeap){
if(!maxHeap){
printf("该堆不存在!\n");
return;
}
if(find(element, maxHeap)){
printf("堆中已存在元素%d,不再插入!\n", element);
return;
}
if(maxHeap->size == maxHeap->capacity){
printf("该堆的容量已满,不能再插入元素了\n");
return;
}else{
/*
因为这里可能需要使用哨兵元素来判断是否结束循环,
所以哨兵元素在插入操作时,必须为待插入元素与该堆最大元素的较大者
判断哨兵元素是否更新,更新后可以作为判断条件,
但是插入数据后一定要将哨兵元素的值恢复成该堆的最大元素
*/
if(maxHeap->heapArr[0]<element){
maxHeap->heapArr[0] = element;
}
int i = ++maxHeap->size;
for(;maxHeap->heapArr[i/2]<element;i/=2){
maxHeap->heapArr[i] = maxHeap->heapArr[i/2];
}
maxHeap->heapArr[i] = element;
//最后复原哨兵元素
maxHeap->heapArr[0] = maxHeap->heapArr[1];
}
}
/*
删除并返回最大堆里的最大的元素
原理:最大堆的最大元素为根结点上的元素,也就是说,等价于给根结点位置重新找子树中最大的元素,合并左右两颗最大堆。
先删除最后一个结点n(值替换根结点的值),从根开始找出当前结点下较大的子结点,
然后用这个子结点的值与结点n的值比较,
如果大于结点n的值,则这个子结点的值移动到父结点的位置,该子节点的位置作为下一个父结点,继续向下查找;
如果小于结点n的值,则停止向下搜索。
这叫采用下滤(percolate down)的方式搜索。
*/
int deleteMax(MaxHeap maxHeap){
int parent, child;//父结点和子结点的位置
if(maxHeap->size == 0){
printf("该最大堆已经不含有结点\n");
return 0;
}
//初始堆里的最大值
int maxItem = maxHeap->heapArr[1];
//将初始堆的最后一个元素赋值给根结点,并且删除最后一个结点
maxHeap->heapArr[1] = maxHeap->heapArr[maxHeap->size--];
int temp = maxHeap->heapArr[1];
//开始循环比较父结点与子结点的大小
//parent*2<=maxHeap->size判断是否有子结点
for(parent=1; parent*2 <= maxHeap->size; parent=child){
child = parent*2;//左子结点的位置
if((child!=maxHeap->size)&&(maxHeap->heapArr[child]<maxHeap->heapArr[child+1])){
//child!=maxHeap->size成立的话,表明该parent结点有右子结点
//maxHeap->heapArr[child]<maxHeap->heapArr[child+1]判断左右子结点的大小
//如果if条件成立,那么parent的右结点比左结点大,此时child指向右结点的位置
child++;
}
if(maxHeap->heapArr[child] > temp){
maxHeap->heapArr[parent] = maxHeap->heapArr[child];
}else{
break;
}
}
maxHeap->heapArr[parent] = temp;
//修改哨兵
maxHeap->heapArr[0] = maxHeap->heapArr[1];
return maxItem;
}
/*
根据一个数组直接建立堆
而不是一个元素一个元素的插入
原理:先无序将这个元素放入到堆里,
然后按照删除元素的原理(下滤)从第一个含非空子结点(位置:最后一个叶结点的位置/2取整)的元素开始调整
*/
void createMaxHeapByArray(int arr[], int length, MaxHeap maxHeap){
//MaxHeap maxHeap = createMaxHeap(length);
/*
因为这里数组里的元素并未放到maxHeap->heapArr里面
所以需要把这些元素放进去
其实这里不需要另一个数组,这里为了方便理解由数组建堆的原理,
所以另加了一个数组。
*/
maxHeap->size = length;
//将数组元素依次放入完全二叉树里
for(int j=0; j<length; j++){
maxHeap->heapArr[j+1] = arr[j];
}
//开始调整
int i;
for(i = maxHeap->size/2; i>0; i--){
int parent, child, element;
element = maxHeap->heapArr[i];
for(parent = i; parent*2<=maxHeap->size; parent=child){
child = parent*2;
if((child!=maxHeap->size)&&(maxHeap->heapArr[child]<maxHeap->heapArr[child+1])){
child++;
}
if(element >= maxHeap->heapArr[child]){
break;
}else{
maxHeap->heapArr[parent] = maxHeap->heapArr[child];
}
}
maxHeap->heapArr[parent] = element;
}
maxHeap->heapArr[0] = maxHeap->heapArr[1];
}
//测试文件,文件名:main.c
#include "MaxHeap.h"
#include <stdio.h>
#include <stdlib.h>
int main()
{
MaxHeap maxHeap = createMaxHeap(4);
insert(15, maxHeap);
insert(7, maxHeap);
insert(9, maxHeap);
insert(20, maxHeap);
//查找元素7
int position = find(7,maxHeap);
printf("7在第%d个位置\n",position);
//查找不存在的元素21
int pos = find(21,maxHeap);
printf("21在第%d个位置\n",pos);
printf("\n");
for(int i=1;i<=maxHeap->size;i++){
printf("第%d元素为:%d\n", i, maxHeap->heapArr[i]);
}
printf("哨兵为:%d\n", maxHeap->heapArr[0]);
printf("\n");
//重复插入9
insert(9, maxHeap);
printf("\n");
//测试删除最大元素
int maxItem = deleteMax(maxHeap);
printf("删除的最大元素为:%d\n", maxItem);
printf("删除之后的堆为:\n");
for(int i=1;i<=maxHeap->size;i++){
printf("第%d元素为-----%d\n", i, maxHeap->heapArr[i]);
}
printf("哨兵为-----%d\n", maxHeap->heapArr[0]);
//测试直接生成最大堆
printf("\n");
printf("根据数组直接生成最大堆\n");
int arr[5] = {1,2,3,4,5};
MaxHeap newMaxHeap = createMaxHeap(5);
createMaxHeapByArray(arr, 5, newMaxHeap);
for(int m = 1; m<=newMaxHeap->size; m++){
printf("第%d元素为:%d\n", m, newMaxHeap->heapArr[m]);
}
return 0;
}
//结果:
//7在第4个位置
//21在第0个位置
//第1元素为:20
//第2元素为:15
//第3元素为:9
//第4元素为:7
//哨兵为:20
//堆中已存在元素9,不再插入!
//删除的最大元素为:20
//删除之后的堆为:
//第1元素为-----15
//第2元素为-----7
//第3元素为-----9
//哨兵为-----15
//根据数组直接生成最大堆
//第1元素为:5
//第2元素为:4
//第3元素为:3
//第4元素为:1
//第5元素为:2