图像处理
文章平均质量分 81
RLib
http://blog.csdn.net/rrrfff
展开
-
【OpenCV3.3】搭建VS2017+Android开发环境
在上一篇 【OpenCV3.3】编译源码并搭建VS2017+Windows开发环境 中我们搭建了OpenCV的Windows开发环境,现在我们来搭建Android的C++开发环境(当前版本直接使用官方提供的SDK)。原创 2017-08-07 21:36:03 · 20741 阅读 · 1 评论 -
【OpenCV3.3】特征值、奇异值分解与图像矩阵重构
在图像处理方面,矩阵分解被广泛用于降维(压缩)、去噪、特征提取、数字水印等,是十分重要的数学工具,其中特征分解(谱分解)和奇异值分解是两种常用方法,本文简单介绍如何在OpenCV中使用它们对图像进行分解,然后重新构造图像。 本文不会阐述两种分解的数学背景知识,但是为了方便读者唤醒记忆,会先贴出(部分)数学定义,详细的介绍和证明建议阅读矩阵理论相关书籍或者参考资料。原创 2017-08-21 18:11:41 · 16576 阅读 · 0 评论 -
【OpenCV3.3】编译源码并搭建VS2017+Windows开发环境
OpenCV 3.3在8月3号正式Release,带来了许多优化改进和新特性,包括备受关注的深度神经网络(DNN)模块被正式引入主仓库,标志着OpenCV对DNN有了更深层次的优化与支持; 支持通过宏ENABLE_CXX11启用对C++ 11特性的支持;默认包含大量SSE4.X和AVX/AVX2指令集优化;内置Intel IPP版本升级至2017.2,官方测试显示有近15%的性能提升...原创 2017-08-07 16:10:05 · 34569 阅读 · 22 评论 -
OpenCV学习笔记
一、OpenCV概述与功能介绍OpenCV是Intel®开源计算机视觉库。它由一系列 C 函数和少量 C++类构成,实现了图像处理和计算机视觉方面的很多通用算法。OpenCV拥有包括 300多个C函数的跨平台的中、高层 API。它不依赖于其它的外部库——尽管也可以使用某些外部库。OpenCV对非商业应用和商业应用都是免费(FREE)的。(细节参考 license)。代码下载地址转载 2011-08-14 18:30:18 · 2295 阅读 · 2 评论 -
Tesseract-ocr 3.0.2源码 + VS2010项目工程 + 简单测试代码
编译环境:Visual Studio 2010所用类库版本:zlib 1.2.7lpng1514jpegsr9tiff-4.0.3giflib-5.0.4leptonica-1.69tesseract-ocr3.0.2下载地址http://pan.baidu.com/s/1c0pqvQg 密码rlib测试代码bool原创 2013-01-29 15:39:37 · 24944 阅读 · 45 评论 -
从缓冲区中加载BMP位图并返回句柄
C++从缓冲区中加载位图并返回句柄原创 2011-06-30 13:36:00 · 152882 阅读 · 3 评论 -
Tesseract-OCR(开源光学字符识别引擎)
Tesseract-OCR Background The Tesseract OCR engine was one of the top 3 engines in the 1995 UNLV Accuracy test. Between 1995 and 2006 it had little work done on it, but it is probably o原创 2012-01-18 21:18:02 · 162392 阅读 · 6 评论 -
数字图像处理均衡化灰度拉伸C++实现
/// /// 均衡化灰度拉伸/// /// 输出图像数据/// 输入图像数据/// 图像宽度/// 图像高度void equalize_gray(unsigned char *lpdst, const unsigned char *lpsrc, int width, int height){ RLIB_RENAME(width, width_x_height); width_原创 2012-06-23 08:08:53 · 53960 阅读 · 2 评论 -
【OpenCV3.3】通过透视变换矫正变形图像
在平面图像处理中,因为镜头角度等原因,容易导致图像出现倾斜、变形等情况,为了方便后续处理我们常常需要进行图像矫正,其中主要技术原理是两种变换类型--仿射变换(Affine Transformation)和透视变换(Perspective Transformation)。 仿射变换是二维坐标间的线性变换, 故而变换后的图像仍然具有原图的一些性质,包括“平直性”以及“平行性”,常用于原创 2017-08-18 17:13:29 · 53865 阅读 · 3 评论 -
【OpenCV3.3】SVM与字符分类示例
SVM,全称Support Vector Machine,即支持向量机,是机器学习中常用的分类器(同样支持向量回归),属监督式学习的一种。 在二值分类中,SVM通过寻找一个 决策最优分类超平面 来尽可能地将两类样本分开(最大分类间隔)并作为分类的判据,以期得到较强的泛化能力,我们所指的训练(train)主要就是寻找这个超平面。如果你看过相关推导,会发现原本复杂的问题被一步步等价,原创 2017-08-22 14:02:54 · 11895 阅读 · 0 评论