源码:
"""
高斯模糊
"""
import cv2 as cv
import numpy as np
def clamp(pv):
if pv > 255:
return 255
if pv < 0:
return 0
else:
return pv
# 加入高斯噪声
def gaussian_noise(image):
h, w, c = image.shape
for row in range(0, h, 1):
for col in range(0, w, 1):
s = np.random.normal(0, 15, 3)
b = image[row, col, 0]
g = image[row, col, 1]
r = image[row, col, 2]
image[row, col, 0] = clamp(b + s[0])
image[row, col, 1] = clamp(g + s[1])
image[row, col, 2] = clamp(r + s[2])
cv.imshow("noise image", image)
return image
print("----------Hello Python-----------")
src = cv.imread("C:/cvtest/0000.jpg")
cv.namedWindow("input image", cv.WINDOW_AUTOSIZE)
cv.imshow("input image", src)
t1 = cv.getTickCount()
src = gaussian_noise(src)
t2 = cv.getTickCount()
time = (t2 - t1) / cv.getTickFrequency()
print("time consume : %sms"%(time * 1000))
# 给原图加入高斯模糊
# cv2.GaussianBlur()
# Parameters:
# src: 输入图像;图像可以具有任意数量的通道,这些通道可以独立处理,
# 但深度应为CV_8U,CV_16U,CV_16S,CV_32F或CV_64F。
# ksize: 高斯内核大小。 ksize.width和ksize.height可以不同,
# 但它们都必须为正数和奇数,也可以为零,然后根据sigma计算得出。
# sigmaX: X方向上的高斯核标准偏差。
# dst: 与src的大小和类型相同的输出图像。
# borderType:
dst = cv.GaussianBlur(src, (5, 5), 0)
cv.imshow("Gaussian Blur", dst)
cv.waitKey(0)
cv.destroyAllWindows()