《python+opencv3.3视频教学 基础入门》高斯模糊 笔记

源码:

"""
高斯模糊
"""

import cv2 as cv
import numpy as np


def clamp(pv):
    if pv > 255:
        return 255
    if pv < 0:
        return 0
    else:
        return pv


# 加入高斯噪声
def gaussian_noise(image):
    h, w, c = image.shape
    for row in range(0, h, 1):
        for col in range(0, w, 1):
            s = np.random.normal(0, 15, 3)
            b = image[row, col, 0]
            g = image[row, col, 1]
            r = image[row, col, 2]
            image[row, col, 0] = clamp(b + s[0])
            image[row, col, 1] = clamp(g + s[1])
            image[row, col, 2] = clamp(r + s[2])
    cv.imshow("noise image", image)
    return image


print("----------Hello Python-----------")
src = cv.imread("C:/cvtest/0000.jpg")
cv.namedWindow("input image", cv.WINDOW_AUTOSIZE)
cv.imshow("input image", src)

t1 = cv.getTickCount()
src = gaussian_noise(src)
t2 = cv.getTickCount()
time = (t2 - t1) / cv.getTickFrequency()
print("time consume : %sms"%(time * 1000))

# 给原图加入高斯模糊
# cv2.GaussianBlur()
# Parameters:
#     src: 输入图像;图像可以具有任意数量的通道,这些通道可以独立处理,
#     但深度应为CV_8U,CV_16U,CV_16S,CV_32F或CV_64F。
#     ksize: 高斯内核大小。 ksize.width和ksize.height可以不同,
#     但​​它们都必须为正数和奇数,也可以为零,然后根据sigma计算得出。
#     sigmaX: X方向上的高斯核标准偏差。
#     dst: 与src的大小和类型相同的输出图像。
#     borderType:
dst = cv.GaussianBlur(src, (5, 5), 0)
cv.imshow("Gaussian Blur", dst)

cv.waitKey(0)

cv.destroyAllWindows()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值