Lamport Clock 笔记

Time, Clocks, and the Ordering of Events in a Distributed System 论文阅读笔记

之前看过一点分布式算法:Distributed Computing —— Principles, Algorithms, and System 笔记,看这篇就比较轻松了。

happens-before relation: a → b a\to b ab, event a a a happens before event b b b if

  • a a a b b b 在同一进程,并且 a a a sequences before b b b
  • a ​ a​ a b ​ b​ b 在不同进程,并且 a ​ a​ a synchronizes before b ​ b​ b,即 a ​ a​ a 是一个消息发送事件, b ​ b​ b 是一个消息接收事件
  • → \to 具有传递性

happens-before 是偏序关系(partial ordering),称 a a a b b b 是并发的,即 a ∣ ∣ b a||b ab,如果 a ̸ → b a\not \to b a̸b 并且 b ̸ → a b\not\to a b̸a

Logical Clock

logical clock 是每一个进程自己的递增的 counter(递增步幅不定),当一个事件发生时就产生一个 timestamp, C i ( a ) C_i(a) Ci(a)

如果 a → b ​ a\to b​ ab,那么

  • a a a b b b 在同一进程,有 C ( a ) &lt; C ( b ) C(a)&lt;C(b) C(a)<C(b)
  • 进程 p i p_i pi 的发送事件 a a a 和进程 p j p_j pj 的接受事件 b b b,有 C i ( a ) &lt; C j ( b ) C_i(a)&lt;C_j(b) Ci(a)<Cj(b)

于是有
a → b ⇒ C ( a ) &lt; C ( b ) a\to b \Rightarrow C(a) &lt; C(b) abC(a)<C(b)
反之不成立

Ordering the Events Totally

在进程间定义全序关系 ≺ \prec ,可以任意指定

定义事件全序关系 a ⇒ b a\Rightarrow b ab,事件 a ∈ p i a\in p_i api,事件 b ∈ p j b\in p_j bpj,如果

  • C i ( a ) &lt; C j ( b ) C_i(a)&lt;C_j(b) Ci(a)<Cj(b) 或者
  • C i ( a ) = C j ( b )   ∧   p i ≺ p j C_i(a)=C_j(b)\ \land\ p_i\prec p_j Ci(a)=Cj(b)  pipj

于是有 a → b a\to b ab 推出 a ⇒ b a\Rightarrow b ab

有句话他在 intro(Ref[1]) 中强调了:

The synchronization is specified in terms of a State Machine.

在 FIFO 通信模型中)A process can execute a command timestamped T T T when it has learned of all commands issued by all other processes with timestamps less than or equal to T T T.

Physical Clocks

C i ( t ) C_i(t) Ci(t) 表示进程 p i p_i pi 在物理时刻 t t t 时的进程逻辑时钟的值。

  • ∣ C i ′ ( t ) − 1 ∣ &lt; k |C_i^{&#x27;}(t)-1|&lt;k Ci(t)1<k
  • ∣ C i ( t ) − C j ( t ) ∣ &lt; ϵ |C_i(t)-C_j(t)|&lt;\epsilon Ci(t)Cj(t)<ϵ

为了保证:在物理时刻 t t t p j p_j pj 发出的信息到达 p i p_i pi 的时钟 C i ( t + t 0 ) C_i(t+t_0) Ci(t+t0) 一定比 C j ( t ) C_j(t) Cj(t) 大,我们需要找到一个 μ \mu μ,使得 C i ( t + μ ) − C j ( t ) &gt; 0 C_i(t+\mu)-C_j(t) &gt; 0 Ci(t+μ)Cj(t)>0,其中 μ \mu μ 是比传输时间小的值。

粗略估计,当 μ ≥ ϵ 1 − k \mu \ge \frac{\epsilon}{1-k} μ1kϵ 时, C i ( t + μ ) − C j ( t ) &gt; 0 C_i(t+\mu)-C_j(t) &gt; 0 Ci(t+μ)Cj(t)>0 成立。(这保证了现实世界中的同步关系,即所有进程所组成的系统之外的 happens-before 关系)

最后给了个定理,没看懂说的啥,以后看吧。

Reference

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值