最小生成树之kruskal算法
最小生成树就是给定n个点和m(m>=n-1)条边以及m条边的边权,找出n-1条边使得各个点联通并且使总权和最小。说的通俗一点就是给你n个村庄和任意两个村庄之间修公路的价钱,让你算出怎样修公路才能使得各个村庄之间能够到达并且使得修公路的价钱最少。
最小生成树问题可以用kruskal和prim算法来求,在这里介绍一下kruskal算法。
它的思想很简单,就是先对所有的边从小到大进行排序,然后每次取最小的边并判断是否能作为最优解集合里的一个元素。怎么判断呢?就是判断这条边连接的两个点是否已经联通了。如果联通了,说明在这条边之前就有了路径使这两个点可以相互到达。所以就不需要连接这两个点的边了。所以我们就可以一直找边,到所有的点都联通为止。在求解的时候不断更新最小权值,这样最后的结果就是答案了。
那问题来了,怎么判断两个数是否是联通的呢?这里可以用并查集来解决。我们约定,如果若干点在一个集合中,那么我们令他们的祖先都是一样的。这样加入一个新的点就再次更新他的祖先值。那么判断两个点是否是一个集合就只要判断他们的祖先是否一样就行了。那么初始值我们就把他们的祖先都定义为自己。至于每个集合里的元素的祖先是哪个元素,随缘吧,自己愿意定义哪个就是哪个,或者不用管,算法会帮你这个忙的。
那为了更加叙述的方便,我们拿一个例子来说:
还是畅通工程
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 32088 Accepted Submission(s): 14404
当N为0时,输入结束,该用例不被处理。
3 1 2 1 1 3 2 2 3 4 4 1 2 1 1 3 4 1 4 1 2 3 3 2 4 2 3 4 5 0
3 5
这个题目就是典型的最小生成树问题。给定N个村庄,再给出N(N-1)/2个线路,求最短联通所有点的路径。
示例代码如下(相应解释有对应的注释):
#include <iostream>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <algorithm>
using namespace std;
int n,m;
int father[105];//用来记录i的祖先,并查集的需要
struct Edge//用来记录边的信息,x,y分别表示一个边的两个顶点,dis表示边的长度
{
int x,y,dis;
}edge[5005];
bool cmp(Edge a,Edge b)//sort函数的实现,把边用小到大排序
{
if(a.dis==b.dis&&a.x==b.x)
return a.y<b.y;
if(a.dis==b.dis)
return a.x<b.x;
return a.dis<b.dis;
}
int find_fa(int x)
{
if(x==father[x])
return x;
else
return father[x]=find_fa(father[x]);
}
void kruskal()
{
int sum=0;
for(int i=1;i<=m;i++)
{
int x1,y1;
//x1和y1的祖先
x1=find_fa(edge[i].x);
y1=find_fa(edge[i].y);
if(x1!=y1)//如果两个的祖先不一样,就说明该边可以用
{
father[y1]=father[x1];//使他们的祖先一样,表示他们在一个集合
sum+=edge[i].dis;
}
}
printf("%d\n",sum);
}
int main()
{
// freopen("s","r",stdin);
while(scanf("%d",&n)!=EOF)
{
if(!n) {break;}
for(int i=1;i<=n;i++)
father[i]=i;
m=n*(n-1)/2;
for(int i=1;i<=m;i++)
{
scanf("%d%d%d",&edge[i].x,&edge[i].y,&edge[i].dis);
if(edge[i].x>edge[i].y)//这步有点多余,只是想把边排序的时候比较好看而已
{
int k=edge[i].x;
edge[i].x=edge[i].y;
edge[i].y=k;
}
}
sort(edge+1,edge+m+1,cmp);
kruskal();
}
return 0;
}