ruby5
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
47、机器学习分类器与调度算法研究
本文探讨了机器学习中不同分类器在加密货币数据上的性能表现,发现SVM结合增强正弦余弦方法(eSCA)在准确率上显著优于其他算法。同时,研究提出一种受粪甲 beetle觅食行为启发的改进粒子群优化算法(DBPSO),用于解决大规模单机总加权拖期调度问题(LSSMTWTSP)。实验表明,DBPSO在求解效率和解的质量上均优于现有算法。文章进一步分析了算法优势与挑战,并展望了分类器优化、混合算法设计及跨领域应用等未来研究方向。原创 2025-09-27 09:42:36 · 31 阅读 · 0 评论 -
46、手写字符分割与加密货币价值预测的技术探索
本文探讨了手写字符分割与加密货币价值预测中的技术创新。在手写字符分割方面,提出的方法基于重叠比率选择策略,有效处理Modi字符簇的重叠与相连问题,显著提升分割准确率。在加密货币预测领域,结合改进的正弦余弦算法(eSCA)优化支持向量机(SVM)超参数,提升了价格分类精度。实验结果表明,SVM-eSCA模型优于传统方法。文章还展望了技术在历史文献数字化、投资决策支持等方面的应用,并提出了多语言分割、深度学习融合及多模型预测等未来研究方向。原创 2025-09-26 13:25:28 · 20 阅读 · 0 评论 -
45、古代手写 Modi 文档统一字符簇分割新方法
本文提出了一种针对古代手写Modi文档中统一字符簇的新型分割方法,旨在解决高度相连、重叠及风格化文字带来的分割挑战。该方法无需依赖注释或训练数据,通过预处理阶段的二值化、Shirorekha与基线检测、局部分区及连通组件分析,结合重叠比率自适应选择三种分割策略(ClusterSeg1/2/3),分别处理高度重叠、部分相连和完全相连字符簇。实验在1789个真实字符簇上验证,总体正确分割率达86.33%,显著优于现有方法。研究有效解决了过度分割问题,提升了手写Modi文本的可识别性,为历史文档数字化提供了技术支原创 2025-09-25 10:08:01 · 35 阅读 · 0 评论 -
44、模糊逻辑在医学领域的应用与前景
本文探讨了模糊逻辑在医学领域的广泛应用,特别是在乳腺癌和肺癌的早期检测与诊断中的重要作用。通过多个研究案例,展示了不同输入变量、模糊化方法和规则库设计对系统性能的影响,准确率最高可达97.7%。文章还分析了模糊逻辑系统的构建流程及其局限性,并展望了未来基于模糊逻辑的智能医疗模型,如从养老院到ICU的自动患者状态评估系统,展现了其在提升医疗服务效率与质量方面的巨大潜力。原创 2025-09-24 16:03:05 · 28 阅读 · 0 评论 -
43、智能算法与模糊逻辑在不同领域的应用
本文探讨了智能算法(如GWO和TLBO)在PID控制器优化中的应用,比较了其在ISE和IAE性能指标下的表现,并深入分析了模糊逻辑在医学科学中的重要作用。重点介绍了模糊逻辑系统的基本原理及其在多种疾病(包括COVID-19、心脏病、甲状腺疾病、乳腺癌和肺癌)诊断中的实际应用案例,展示了其在处理不确定性数据和复杂医学决策中的优势。文章还展望了模糊逻辑与人工智能、大数据融合的未来发展方向,强调其在个性化医疗和医学教育中的潜力。原创 2025-09-23 11:06:27 · 34 阅读 · 0 评论 -
42、交通标志识别与混合可再生能源系统PID调优研究
本文研究了交通标志识别与混合可再生能源系统(HRES)中PID控制器的优化问题。在交通标志识别方面,基于Deep ConvNets的方法在GTSRB数据集上达到了99.43%的准确率,超越人类表现及其他先进方法。在HRES方面,构建了包含光伏、风电、储能及柴油发电机的单区域系统模型,并采用灰狼优化(GWO)和教学学习优化(TLBO)算法对PID控制器进行参数调优。仿真结果表明,TLBO在ISE和IAE等性能指标上表现更优且收敛更快,而GWO调优时间更短。研究为智能交通与可再生能源系统的高效控制提供了理论支持原创 2025-09-22 09:23:26 · 25 阅读 · 0 评论 -
41、机器学习在短信垃圾检测与交通标志识别中的应用
本文探讨了机器学习在短信垃圾检测与交通标志识别中的应用。在短信垃圾检测中,随机森林(RF)分类器表现出色,准确率达99.73%,精确率100%,AUROC为1.0,展现出卓越的性能。在交通标志识别方面,提出的深度ConvNets模型结合数据预处理与增强技术,在GTSRB数据集上实现了99.43%的准确率,优于多种现有方法。文章详细分析了两类任务的技术流程、模型设计与实验结果,并展望了未来在模型优化、多模态融合和复杂场景应对中的发展方向。原创 2025-09-21 10:04:14 · 21 阅读 · 0 评论 -
40、图像增强与短信垃圾检测技术解析
本文探讨了图像增强与短信垃圾检测两项关键技术。在图像增强方面,提出基于Type-II模糊的隶属函数方法用于番石榴果实图像处理,在SSIM指标上优于ACO、CLAHE等现有算法,显著提升图像质量。在短信垃圾检测方面,构建包含11132条短信的数据集,采用词袋模型进行特征提取,并对比多项式朴素贝叶斯、逻辑回归、SVM、随机森林和决策树等分类器性能,结果显示随机森林在准确率(99.73%)和F1分数(98.95%)上表现最优。文章还分析了各分类器特点及适用场景,并展望了多模态融合、深度学习应用、实时检测与跨平台兼原创 2025-09-20 12:09:03 · 19 阅读 · 0 评论 -
39、基于二型模糊的番石榴果实图像增强技术
本文提出了一种基于二型模糊逻辑的番石榴果实图像增强技术,旨在解决复杂环境条件下水果图像对比度低、边缘模糊等问题。通过引入S形和Z形隶属函数进行模糊分区与阈值选择,结合自适应增强策略,有效提升了图像质量。实验结果表明,该方法在PSNR和SSIM指标上优于ACO、PSO、GC和CLAHE等现有技术,能够显著改善番石榴图像的视觉效果与细节保留,为水果自动分类与智能采摘机器人提供了可靠的技术支持。原创 2025-09-19 10:15:01 · 37 阅读 · 0 评论 -
38、模糊系统优化方法综述
本文综述了基于群体智能算法的模糊系统优化方法,重点探讨了粒子群优化(PSO)、蚁群优化(ACO)和人工蜂群(ABC)算法在不同领域的应用。涵盖了能源、电力、医疗、机器人控制等多个应用场景,总结了各类算法的操作步骤与性能特点,并通过案例分析比较其优劣。文章还提出了模糊系统优化中的挑战与解决方案,展望了未来在类型-2模糊系统等方面的研究方向,为相关领域提供了系统的理论参考与实践指导。原创 2025-09-18 10:25:50 · 45 阅读 · 0 评论 -
37、模糊系统优化:进化算法与群体智能的融合探索
本文探讨了模糊系统在不确定环境下的决策能力优化,重点分析了遗传算法(GA)和群体智能技术(如PSO、ACO、ABC)与模糊系统的融合应用。文章介绍了模糊规则系统(FRBS)的基本结构及其与进化算法结合形成的遗传模糊系统(GFS)和群体模糊系统(SFS),并综述了在工程、医疗、金融、交通等领域的实际应用案例。研究表明,通过多目标进化算法可在保持系统可解释性的同时提升准确性,未来发展方向包括多技术融合、跨领域拓展及理论与实践的深度结合。原创 2025-09-17 12:39:30 · 55 阅读 · 0 评论 -
36、模糊系统与机器学习融合的综述
本文综述了模糊系统与机器学习融合的研究进展,探讨了模糊聚类、模糊回归等技术在不同领域的应用,并分析了多种混合模型在实际数据集上的性能表现。文章重点介绍了自适应神经模糊推理系统(ANFIS)等集成方法的优势,提出了基于数据特征的决策流程,指导在医疗诊断、环境监测和工业控制等领域中合理选择模型。最后展望了多技术融合、跨领域应用和模型优化等未来发展趋势。原创 2025-09-16 14:32:33 · 40 阅读 · 0 评论 -
35、新冠疫情全球传播分析与模糊系统和机器学习技术融合综述
本文综述了2020年4月1日至6月15日期间新冠疫情在全球的传播情况,重点分析了美国、英国、印度、巴西和俄罗斯五个国家的感染与死亡数据,揭示了各国疫情的严重时段及死亡率差异。同时,文章探讨了模糊系统与机器学习技术的融合,阐述了其在处理不确定性、提升模型准确性与可解释性方面的优势,并介绍了在医疗、金融、交通等领域的应用前景。通过数据驱动的视角,强调多技术融合在应对复杂现实问题中的重要性,展望了未来技术深度融合与跨领域拓展的趋势。原创 2025-09-15 10:33:45 · 35 阅读 · 0 评论 -
34、太阳能光伏最大功率点跟踪技术与新冠病毒传播分析
本文探讨了太阳能光伏系统中最大功率点跟踪(MPPT)技术的研究进展,重点比较了自适应布谷鸟搜索算法(ACSO)与自适应粒子群算法(APSO)在部分遮荫条件下的性能表现。结果表明,ACSO在跟踪速度和功率提取效率方面优于APSO。同时,文章分析了新冠病毒的传播机制,包括传播途径、影响因素及防控策略,并介绍了SIR数学模型在疫情预测中的应用。最后指出,在可再生能源与公共卫生领域均需持续创新以应对复杂挑战。原创 2025-09-14 12:44:13 · 18 阅读 · 0 评论 -
33、深度学习助力:瑜伽学习与太阳能光伏最大功率点追踪技术解析
本文探讨了深度学习在瑜伽学习应用和太阳能光伏最大功率点追踪(MPPT)技术中的应用。在瑜伽学习方面,通过构建多样化数据集、采用VGG16等深度学习模型实现体式识别,并结合OpenPose进行姿势矫正,提供实时反馈界面提升用户体验;在太阳能光伏领域,分析了传统MPPT技术的局限性,提出利用人工智能方法优化MPP追踪,并展望了未来通过高速服务器、5G通信和算法优化提升系统性能的方向。两大应用场景均展示了深度学习在实际工程中的巨大潜力与挑战。原创 2025-09-13 15:56:14 · 34 阅读 · 0 评论 -
32、深度学习助力瑜伽学习应用:精准矫正与高效训练
本文介绍了一种基于深度学习的瑜伽学习应用,通过结合卷积神经网络(CNN)和长短期记忆网络(LSTM)实现精准的瑜伽姿势识别与实时矫正。文章分析了现有技术的局限性,提出了一种更具鲁棒性的解决方案,包括构建多样化数据集、设计高效的深度学习模型架构,并采用数据增强与正则化等优化策略。实验结果表明,该方法在准确率、精确率、召回率和F1值上均优于现有方法。同时,系统配备了友好的用户界面,可提供实时反馈与训练记录,提升用户体验与练习安全性,具有良好的实用价值和发展前景。原创 2025-09-12 16:49:51 · 29 阅读 · 0 评论 -
31、机器学习与太阳能光伏系统控制技术的前沿探索
本文探讨了机器学习在仇恨言论检测中的高准确率应用,并重点研究了太阳能光伏系统中的先进控制技术。提出了一种结合遗传算法调谐PI控制器与人工神经网络(ANN)的新型MPPT方法,有效提升了系统在不同光照条件下的稳定性、收敛速度和输出效率。通过仿真与案例分析,验证了该技术相较于传统方法在减少振荡、缩短稳定时间及降低开关损耗方面的显著优势。文章还展望了该技术在智能电网、分布式发电及储能等领域的应用前景,并指出未来向多学科融合、自适应控制和系统智能化发展的趋势。原创 2025-09-11 11:09:49 · 36 阅读 · 0 评论 -
30、基于多层混合机器学习模型的改进仇恨言论检测系统
本文提出了一种基于多层混合机器学习模型的改进仇恨言论检测系统,结合自然语言处理技术对社交媒体文本进行分类。通过数据预处理、特征提取(包括词袋法、TF-IDF和二元语法)以及九种基础机器学习算法与逻辑回归元分类器的两层混合模型架构,显著提升了检测准确率。实验结果表明,该模型在平衡后的仇恨言论数据集上准确率达到94.78%,F1分数为94.59%,优于传统单一模型。研究还采用十折交叉验证减少过拟合,增强了模型稳定性,为社交媒体内容安全提供了高效解决方案。原创 2025-09-10 13:07:05 · 50 阅读 · 0 评论 -
29、基于数字图像处理识别路标的自动驾驶系统
本文介绍了一种基于数字图像处理的路标识别自动驾驶系统,重点探讨了目标视觉检测(OVD)技术在智能交通中的应用。文章综述了目标检测的发展历程,从传统手工特征方法到现代深度学习模型,并分析了帧差法、Viola-Jones算法和肤色建模等经典算法的优缺点。针对交通标志检测场景,提出了一种基于单一学习的检测框架(SLDF),结合密集特征提取与多类检测器共享机制,提升了检测效率与鲁棒性。系统架构采用CNN进行特征提取,并通过实验数据验证了其在图像和视频检测中的性能表现。未来研究方向包括利用交通规则辅助检测、优化CNN原创 2025-09-09 09:23:50 · 35 阅读 · 0 评论 -
28、虚假评论检测与基于深度学习的图像检索技术
本文探讨了虚假评论检测与基于深度学习的图像检索技术。在虚假评论检测方面,提出采用三种独特算法结合特征权重计算,有效识别垃圾评论,并分析其在电商、社交等领域的应用;在图像检索方面,构建基于CNN的模型提取图像特征,结合余弦相似度实现高效检索,实验显示在CIFAR-10数据集上分类准确率达82.56%。文章还比较了两种技术的共性与差异,探讨了相互借鉴的可能性及未来发展方向,展示了其在多领域的广泛应用前景。原创 2025-09-08 11:57:52 · 44 阅读 · 0 评论 -
27、虚假消费者评论检测:方法与实践
本文探讨了在线社交媒体平台中虚假消费者评论的检测方法与实践。随着用户生成评论在消费决策中的重要性日益增加,虚假评论问题也愈发严重。文章综述了现有相关研究,并对比了多种分类算法在评论检测中的表现,发现支持向量机(SVM)和逻辑回归具有更高的准确率。通过数据处理中的过采样策略、文本预处理、特征工程以及自学习机制,构建了一个高效的检测系统。实验结果表明,合理的特征选择与算法优化能显著提升检测性能,为电商平台和消费者提供更可信的评论环境。原创 2025-09-07 09:39:11 · 61 阅读 · 0 评论 -
26、利用图像处理和交通控制关键路径映射最小化救护车响应时间
本文提出了一种基于学习的单一检测框架(SLDF),结合图像处理与交通控制关键路径映射,旨在最小化救护车响应时间。该框架利用光流技术和卷积神经网络(CNN)实现高精度的目标检测,支持救护车、汽车和自行车等多类物体识别。通过空间池化特征增强鲁棒性,并引入物体子类分类方法提升泛化性能。实验结果表明,该方法在准确率(总体达99.73%)和检测效率方面显著优于传统方法。未来工作将聚焦于多场景数据利用、CNN特征优化及构建自动分类与实时预警系统,推动智能交通与应急救援系统的智能化发展。原创 2025-09-06 15:33:58 · 21 阅读 · 0 评论 -
25、基于步态能量图像的性别分类方法研究
本文研究基于步态能量图像(GEI)的性别分类方法,比较了深度神经网络、余弦相似度和单样本学习三种方法的性能。通过CASIA-B数据集生成GEI,并采用ResNet-50、特征向量匹配与Siamese网络进行实验。结果显示,单样本学习方法准确率达到99%,显著优于传统方法,且适用于小样本场景。文章还分析了各方法的优劣,提出了在安防、医疗和广告等领域的应用建议,并展望了多模态融合、轻量级模型与自适应学习等未来发展方向。原创 2025-09-05 15:05:21 · 30 阅读 · 0 评论 -
24、计算机视觉在植被监测与性别分类中的应用探索
本文探讨了计算机视觉在植被监测与性别分类两个领域中的应用。在植被监测方面,提出基于HSV颜色模型和卫星图像的方法,通过生成掩码与形态学变换计算区域绿色像素百分比及变化,有效减少光照影响,但尚无法区分植物与非植物绿色物体。在性别分类方面,重点分析步态能量图像结合深度学习与传统分类器(如SVM、ANN)的应用,比较多种方法的准确率,并提出融合多模态信息(步态、面部、语音)的深度学习框架以提升分类性能。研究表明,计算机视觉在这两个领域均具潜力,未来可通过多特征融合与模型优化进一步提升精度与适用性。原创 2025-09-04 09:46:44 · 23 阅读 · 0 评论 -
23、手写文档与森林植被识别技术的研究与应用
本文探讨了阿姆哈拉语手写文档识别与森林植被监测两项关键技术的研究与应用。在手写文档识别方面,采用3卷积层CNN模型结合预处理、形态学转换和分割技术,显著提升了识别准确率;在森林植被监测方面,基于HSV颜色空间的多种方法有效克服光照和阴影影响,提高了植被识别精度。文章还分析了不同技术的优劣,展示了实际应用案例,并展望了未来发展趋势,包括模型优化、多模态融合、高分辨率图像应用和多传感器融合等方向,为信息数字化和生态环境保护提供了有力的技术支持。原创 2025-09-03 10:59:44 · 27 阅读 · 0 评论 -
22、植物叶片疾病诊断与阿姆哈拉手写文档识别的深度学习技术探索
本文探讨了深度学习在植物叶片疾病诊断和阿姆哈拉手写文档识别两个领域的应用。在植物叶片诊断方面,重点研究了CNN模型的压缩技术,比较了剪枝与权重聚类方法,结果显示权重聚类在保持98.882%高准确率的同时实现12.7倍压缩率,显著提升模型效率。在阿姆哈拉手写识别方面,介绍了从图像采集到分类的完整流程,并提出通过数据增强、模型融合和预处理优化来提升系统性能。文章最后展望了深度学习在这两个领域的发展方向,包括多传感器融合、移动部署及与办公平台集成等应用前景。原创 2025-09-02 14:22:26 · 31 阅读 · 0 评论 -
21、森林覆盖变化预测与植物病害诊断CNN压缩研究
本博客探讨了森林覆盖变化预测与基于CNN的植物病害诊断模型压缩两项研究。在森林覆盖变化研究中,利用多时期遥感数据构建转移概率矩阵,结合逻辑回归与元胞自动机模型预测2032年森林物种分布趋势,并通过Kappa系数验证模型准确性。在植物病害诊断研究中,采用CNN对PlantVillage数据集进行叶片病害分类,实现99%高准确率,并通过剪枝、量化等压缩技术提升模型效率,适用于移动端农业应用。两项研究分别为森林可持续管理与智能农业提供了技术支持和实践路径。原创 2025-09-01 14:48:49 · 26 阅读 · 0 评论 -
20、深度学习分类器在医学与森林覆盖预测中的应用研究
本文探讨了深度学习分类器在医学与森林覆盖预测中的应用。在医学领域,对比了多种预训练网络对COVID-19、肺炎和正常胸部X光图像的多分类性能,推荐使用表现优异且训练高效的DenseNet201模型;在森林研究中,基于Landsat影像与多源环境变量,采用逻辑回归与CA-Markov耦合模型预测摩洛哥中阿特拉斯森林覆盖变化趋势。研究表明,两类方法均能有效提升各自领域的分析精度与决策支持能力,并为未来多模态融合、实时监测等方向提供了科学依据。原创 2025-08-31 11:01:05 · 20 阅读 · 0 评论 -
19、基于胸部X光的COVID - 19检测与旅游推荐系统技术解析
本文介绍了一个结合地理位置与用户评价的旅游推荐系统,以及一种基于胸部X光图像和迁移学习的多类COVID-19检测模型。旅游推荐系统利用Selenium获取用户位置,采用R树结构管理地点信息,并通过LSTM分析用户评价,使用Flask和SQLAlchemy实现前后端交互。针对传统RT-PCR检测效率低的问题,提出的医学影像检测方法使用VGG、DenseNet、Xception等预训练深度学习模型进行特征提取,结合微调与分类器结构,在有限数据下有效提升分类准确率,具备高灵敏度与特异性,为自动化疾病筛查提供了可行原创 2025-08-30 11:30:33 · 24 阅读 · 0 评论 -
18、机器人手臂控制与颜色识别及动态评级度假顾问技术解析
本文深入解析了机器人手臂控制与颜色识别系统以及动态评级度假顾问系统的原理、技术架构与应用前景。机器人手臂系统结合TCS320颜色传感器、机器学习算法和PWM控制,实现物体识别与精准操作,适用于工业分拣与残疾人辅助等场景;而动态评级度假顾问系统融合R树位置检索与LSTM情感分析,基于用户位置和评论内容提供个性化旅游推荐。文章还对比了相关技术优劣,展示了实际应用案例,并探讨了未来发展趋势,包括成本优化、模型扩展性提升及跨领域融合,如智能旅游服务的协同发展。原创 2025-08-29 16:07:37 · 20 阅读 · 0 评论 -
17、自闭症谱系障碍检测与机械臂控制及颜色识别技术
本文探讨了多模态磁共振成像技术在自闭症谱系障碍(ASD)检测中的应用,提出基于sMRI和fMRI数据融合与深度信念网络(DBN)的分类模型,提升诊断准确性。同时,研究了四自由度机械臂的设计与控制,结合颜色传感器和机器学习算法实现物品的颜色识别与分类,并通过强化学习解决投掷等复杂任务的挑战。展示了人工智能与机器人技术在医疗诊断与自动化领域的深度融合与应用前景。原创 2025-08-28 11:11:20 · 46 阅读 · 0 评论 -
16、视频隐写与自闭症谱系障碍检测技术解析
本文探讨了视频隐写技术与自闭症谱系障碍(ASD)检测技术的最新进展。在视频隐写方面,通过在8位表示中嵌入秘密数据,实现了高安全性和良好的图像质量,未来可优化随机数生成与加密算法。在ASD检测方面,传统方法受限于主观性和行为数据延迟,而基于sMRI和fMRI的神经影像技术为早期诊断提供了可能。研究表明,单一模态存在局限,融合结构与功能MRI数据的ASD_sfMRI框架能显著提升检测准确性。尽管面临早期诊断困难、过拟合和数据异质性等挑战,结合多模态数据与先进机器学习方法仍是未来发展方向。持续优化特征提取、分类器原创 2025-08-27 13:53:47 · 44 阅读 · 0 评论 -
15、基于随机像素选择的视频文件AES加密文本隐藏方法
本文提出一种基于随机像素选择的视频文件AES加密文本隐藏方法,结合AES 128位加密算法与最低有效位(LSB)技术,将加密后的文本随机嵌入视频帧的像素中。通过Mersenne Twister算法实现帧和像素的随机选取,提升隐藏数据的不可检测性。实验结果显示PSNR达71.482,MSE为0.0046,表明该方法在保证视频质量的同时具备优异的安全性和隐蔽性,适用于军事通信、版权保护等高安全需求场景,并对未来在量子加密、VR/AR拓展及实时性应用方向提出展望。原创 2025-08-26 09:35:35 · 38 阅读 · 0 评论 -
14、无人机与机器人在医疗和体育领域的应用探索
本文探讨了无人机在医疗配送和机器人在体育领域(特别是足球比赛)中的应用。无人机凭借快速送达优势在紧急药品运输中展现潜力,但面临降落安全、网络安全和故障风险等挑战;而基于HOG特征提取与SVM分类的足球机器人目标检测方法,在处理器受限的Nao机器人平台上实现了平均0.875的准确率,表现出优于部分深度学习模型的效果。文章对比了两类技术的应用场景与挑战,并展望了未来发展方向:无人机将通过技术升级实现更安全高效的医疗配送,机器人则有望在目标检测精度和应用场景上持续拓展,推动医疗与体育领域的智能化变革。原创 2025-08-25 13:03:46 · 33 阅读 · 0 评论 -
13、印度场景下无人机在疫苗配送中的应用
本文探讨了无人机在印度新冠疫苗配送中的应用潜力与挑战。文章介绍了无人机按尺寸分类及其特性,回顾了疫情期间无人机在封锁监控和消毒作业中的实际案例,并分析了无人机在医疗领域如药品运输、生物样本递送等方面的应用。重点讨论了印度使用无人机配送疫苗的可行性,分为视距内和超视距两个试验阶段,并指出了当前面临的主要挑战,包括温度控制、电池续航、成本高昂和负载能力限制。针对这些挑战,提出了技术创新与政策支持相结合的应对策略,展望了无人机技术在未来印度医疗物流体系中的广阔前景。原创 2025-08-24 15:56:42 · 54 阅读 · 0 评论 -
12、推特数据情感分析与印度疫苗配送无人机应用研究
本文探讨了推特数据情感分析与无人机在印度疫苗配送中的应用。在情感分析部分,研究通过Python及相关工具对新冠疫苗相关的推文进行数据收集、预处理、分类与可视化,旨在了解公众情绪与舆论趋势;在无人机应用部分,分析了其在偏远地区快速、高效配送疫苗的优势,并讨论了法规、技术、天气和公众接受度等挑战及解决方案。随着技术进步与政策完善,无人机有望大幅提升印度疫苗覆盖效率,而情感分析则为公共卫生决策提供数据支持。原创 2025-08-23 09:23:37 · 25 阅读 · 0 评论 -
11、人群检测与Twitter情绪分析技术全解析
本文全面解析了人工智能技术在人群检测与Twitter情绪分析中的应用。在人群检测方面,探讨了基于机器学习、深度学习和图像处理的多种方法,并比较了其性能与挑战,提出了结合深浅层网络的密度估计框架。在Twitter情绪分析部分,介绍了从推文数据中提取公众情绪的流程与模型,强调其在公共卫生、企业决策等领域的应用价值。文章还总结了当前技术面临的挑战,并展望了未来发展方向,展示了AI在智能监控与社会舆情分析中的巨大潜力。原创 2025-08-22 16:33:56 · 32 阅读 · 0 评论 -
10、糖尿病视网膜病变检测与人群计数技术研究
本文研究了糖尿病视网膜病变(DR)检测与人群计数技术。在DR检测方面,提出基于Gabor滤波器纹理分析与深度卷积神经网络(CNN)的多分类方法,通过数据上采样和图像预处理提升模型性能,实验表明CNN在90:10和80:20交叉验证中准确率分别达96.9%和97.2%,优于VGG和ResNet模型。在人群计数方面,分析了现有基于深度学习的技术如Faster R-CNN和密度图估计方法,并探讨了遮挡、光照变化和密度不均等挑战及其解决方案,包括多模态数据融合、注意力机制和数据增强。研究表明,结合先进算法与优化策略原创 2025-08-21 15:21:52 · 23 阅读 · 0 评论 -
9、数据挖掘算法分类及糖尿病视网膜病变早期检测
本文探讨了数据挖掘中逻辑回归与决策树算法的分类性能,通过酒店和蘑菇数据集对比了两类模型在不同数据特征下的表现,并分析了各自的优缺点。同时,文章重点阐述了糖尿病视网膜病变(DR)的早期检测重要性,指出现有手动诊断方法的局限性,提出基于图像分析、临床数据与基因信息融合的多模态自动检测解决方案。最后总结了模型选择依据与未来发展方向,强调数据质量、算法创新和跨学科合作对提升DR早期诊断准确性的关键作用。原创 2025-08-20 10:42:31 · 27 阅读 · 0 评论 -
8、数据挖掘算法中的分类方法对比
本文对比了数据挖掘中两种流行的分类算法——逻辑回归和决策树,基于蘑菇数据集和酒店预订数据集进行实验分析。文章详细介绍了两种模型的原理、构建方法及防止过拟合的策略,通过实验评估其在不同场景下的性能表现。结果表明,决策树具有更强的可解释性和对异常值的鲁棒性,适用于大规模分类数据;而逻辑回归在处理简单、小规模分类问题时计算效率更高。研究为实际应用中分类算法的选择提供了参考依据。原创 2025-08-19 13:53:54 · 26 阅读 · 0 评论
分享