用户生存分析的主要方法:Kaplan-Meier估计法

Kaplan-Meier估计法(Kaplan-Meier Estimator):

  1. 一种非参数方法,用于估计生存函数。
  2. 通过计算在每个事件发生时间点的生存概率,并将这些概率连乘得到生存函数。

举例说明:会员用户的生存分析
通过举例说明Kaplan-Meier估计法在会员用户生存分析中的应用,可以帮助我们理解如何使用该方法分析和预测会员用户的留存时间。以下是具体步骤和示例:

示例背景

假设我们运营一个在线服务平台,想要分析会员用户的留存时间,即从注册会员到取消会员资格的时间。我们收集了若干会员用户的数据,包括他们的注册时间、取消会员资格的时间(若已取消),以及是否在观察期结束时仍然是会员。

数据示例

用户ID 注册时间 取消时间 状态
1 2022-01-01 2022-06-01 1(事件发生)
2 2022-02-01 - 0(删失数据)
3 2022-03-01 2022-05-01 1
4 2022-04-01 2022-07-01 1
5 2022-05-01 - 0

状态:1表示用户取消了会员资格,0表示用户在观察期结束时仍然是会员。

步骤

  1. 计算每个时间点的生存概率

    • 生存概率是指在某个时间点上会员用户仍然活跃的概率。
    • Kaplan-Meier估计法通过累积每个时间点的生存概率来计算整体的生存函数。
  2. 构建Kaplan-Meier表格

    • 需要列出每个时间点的事件发生数量、风险集(还活跃的用户数量)、每个时间点的生存概率等。

计算过程

时间点(天) 事件数量 风险集 生存概率 累积生存概率
30(1月) 0 5 1 1
60(2月) 0 5 1 1
90(3月) 1 5 0
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

rubyw

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值