Kaplan-Meier估计法(Kaplan-Meier Estimator):
- 一种非参数方法,用于估计生存函数。
- 通过计算在每个事件发生时间点的生存概率,并将这些概率连乘得到生存函数。
举例说明:会员用户的生存分析
通过举例说明Kaplan-Meier估计法在会员用户生存分析中的应用,可以帮助我们理解如何使用该方法分析和预测会员用户的留存时间。以下是具体步骤和示例:
示例背景
假设我们运营一个在线服务平台,想要分析会员用户的留存时间,即从注册会员到取消会员资格的时间。我们收集了若干会员用户的数据,包括他们的注册时间、取消会员资格的时间(若已取消),以及是否在观察期结束时仍然是会员。
数据示例
| 用户ID | 注册时间 | 取消时间 | 状态 |
|---|---|---|---|
| 1 | 2022-01-01 | 2022-06-01 | 1(事件发生) |
| 2 | 2022-02-01 | - | 0(删失数据) |
| 3 | 2022-03-01 | 2022-05-01 | 1 |
| 4 | 2022-04-01 | 2022-07-01 | 1 |
| 5 | 2022-05-01 | - | 0 |
状态:1表示用户取消了会员资格,0表示用户在观察期结束时仍然是会员。
步骤
-
计算每个时间点的生存概率:
- 生存概率是指在某个时间点上会员用户仍然活跃的概率。
- Kaplan-Meier估计法通过累积每个时间点的生存概率来计算整体的生存函数。
-
构建Kaplan-Meier表格:
- 需要列出每个时间点的事件发生数量、风险集(还活跃的用户数量)、每个时间点的生存概率等。
计算过程
| 时间点(天) | 事件数量 | 风险集 | 生存概率 | 累积生存概率 |
|---|---|---|---|---|
| 30(1月) | 0 | 5 | 1 | 1 |
| 60(2月) | 0 | 5 | 1 | 1 |
| 90(3月) | 1 | 5 | 0 |

最低0.47元/天 解锁文章
1395

被折叠的 条评论
为什么被折叠?



