南京红宝丽最近涨疯了

         最近有个同事离职了,刚想感慨一下大环境真差,不景气,结果该同事买了奶茶和小甜点来跟我们告别了,他说是因为最近股票赚翻了,所以直接辞职回家休息一阵了,真的羡慕死我们了。。。
         想了想,是不是我们可以写一段代码分析下呢。。。
 

import yfinance as yf
import pandas as pd
import matplotlib.pyplot as plt


# 获取南京红宝丽公司股票数据,股票代码为 002165.SZ
def get_stock_data():
    try:
        stock = yf.Ticker("002165.SZ")
        data = stock.history(period="5y")
        return data
    except Exception as e:
        print(f"获取股票数据时出错: {e}")
        return None


# 计算简单移动平均线
def calculate_sma(data, window):
    return data['Close'].rolling(window=window).mean()


# 分析股价走势
def analyze_stock_trend(data):
    if data is not None:
        # 计算 50 日和 200 日简单移动平均线
        sma_50 = calculate_sma(data, 50)
        sma_200 = calculate_sma(data, 200)

        # 绘制股价和移动平均线
        plt.figure(figsize=(12, 6))
        plt.plot(data['Close'], label='Close Price')
        plt.plot(sma_50, label='50-Day SMA')
        plt.plot(sma_200, label='200-Day SMA')
        plt.title('南京红宝丽股价走势及移动平均线')
        plt.xlabel('日期')
        plt.ylabel('股价')
        plt.legend()
        plt.show()

        # 简单的趋势判断
        if sma_50.iloc[-1] > sma_200.iloc[-1]:
            print("短期均线在长期均线上方,股价短期趋势向好。")
        else:
            print("短期均线在长期均线下方,股价短期趋势有待观察。")


# 分析成交量变化
def analyze_volume(data):
    if data is not None:
        plt.figure(figsize=(12, 6))
        plt.bar(data.index, data['Volume'])
        plt.title('南京红宝丽成交量变化')
        plt.xlabel('日期')
        plt.ylabel('成交量')
        plt.show()

        # 计算成交量均值
        volume_mean = data['Volume'].mean()
        recent_volume = data['Volume'].iloc[-1]
        if recent_volume > volume_mean:
            print("近期成交量高于均值,市场关注度可能提升。")
        else:
            print("近期成交量低于均值,市场关注度可能较低。")


if __name__ == "__main__":
    stock_data = get_stock_data()
    analyze_stock_trend(stock_data)
    analyze_volume(stock_data)
    

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值