云计算中商业智能的挑战
摘要
背景/目标:云计算技术是信息技术产业和云组织趋之若鹜的一项重要获取。尽管其伴随着诸多挑战和成本障碍,但仍被视为商业分析的重要来源。方法/统计分析:云将自身与组织中可用的各个层面相结合。它并非必须依赖技术领域,而是与所有可用资源相匹配。商业智能是一种卓越的资源,通过融合云术语及云资源的技术细微差别而得以增强。商业智能解决方案的响应时间与其各项特性协同工作。本文对商业智能(BI)的数学指标及其与云词汇的关联提供了清晰的理解和深入的洞察。研究发现:本研究分析了在与商业智能结合使用时,云计算技术所伴随的关键挑战。主要贡献在于揭示了那些凌驾于云计算机遇之上的关键不确定性。本文还探讨了诸如投资回报率和回收期值方法等数学分析手段,这些方法用于确定经济支出及对可获得原则的投入比例。敏捷性通过绕过云资源的潜在用户数量来衡量 through business intelligence. The study also encompasses various Business Intelligence chauffeurs. 应用/改进:商业智能的概念可通过CloudSim、CloudAnalyst和Aneka等云工具得到有效实现 different models of cloud. The results can be improvised with the capability of BI methods.
1. 引言
信息技术产业在通过计算技术提供基础设施方面面临着伦理问题。为正确的客户提供合适的资源已成为面向商业智能的云服务的迫切需求。满足客户或用户日益增长的需求,对资源的需求与获取成为新兴技术的直接目标。从技术上讲,只有通过客户满意度水平以及产生卓越成果的潜力,才能衡量技术在性能上的超凡表现和革新性发展。近年来,计算的云术语几乎在各个技术领域都获得了越来越重要的地位1。它还在即将普及的虚拟技术中占据了主导地位,影响着各个领域。云提供了三种主要模型或服务,即基础设施、平台和软件。考虑到云计算的场景,有两个重要的视角:消费者视角和提供者视角。对于云服务的消费者或用户而言,他们可以从云中获得并使用各种服务。从概念上讲,消费者可以使用服务,并且只需为实际使用的服务付费。这也被称为来自云资源池的按量共享服务2。计算与商业智能在技术理解上协同工作。而商业智能在数据能力方面更需要并行处理和大规模存储生产方面的获取。
图1,即商业智能模型,明确界定了当前商业智能增强所涉及的各个阶段,以及其交付方法、基础设施、应用、治理和方法论。
2. 云计算与商业智能集成的挑战 (CIBdco)
正如研究人员和企业家所指出的,在采用协同工作的云与BI解决方案服务方面,生产力非常低下,存在9。列出了一些这些组件常遇到的问题,并分析了克服这些问题的方法,以获得更好的结果:
- BI提供商的发展在所提供的租赁服务解决方案上的进展。
- 质量评估以及缺乏对云中服务的控制。
- 对数据威胁的验证。
- 实施。
2.3 云与BI解决方案的融合 (Cdrauio(F))
云服务是这个时代的最佳技术福祉之一,它以软件、基础设施和平台的形式向用户提供广泛的服务和租赁资源10。访问资源的最简单方式也是该技术的一项远程功能。互联网充当用户与云界面之间的桥梁。软件即服务旨在根据需求动态地为客户提供资源。当需求到达数据中心(云)时,其性质仍然是动态而非静态的。随着数据中心在需要更多存储空间和更快性能的同时还需控制成本,云计算、开源技术和其他新兴方法正提供引人注目的新方式来管理数据和消费IT服务11。考虑到云与BI解决方案的情况,存在两个重要视角:消费者视角和提供商视角。从消费者或云服务用户的角度来看,他们被允许并获得来自云的各种服务。从概念术语上讲,消费者可以使用服务,并且只需为其实际使用的服务付费。这也可称为来自云资源池的计量服务共享。BI视角的主要期望是实现更高的利润并降低运营成本12。这就带来了对启发式方法的明确需求,这些方法能够
资源从数据中心进行存储和利用。每个资源均由其集中式提供商管理,这些提供商负责控制点发生的所有活动和操作。一旦用户提出请求或对访问服务的需求设定优先级,服务提供商将联系商业智能界面,并通过网关根据需要处理资源利用19。必须在规定的时间内处理请求,从而实现高效响应时间管理。因此,云服务代理和服务提供商通常是资源请求过程中的积极参与者,他们更加注重向用户和BI解决方案客户交付正确的资源19。
假设图3,云服务代理拥有与企业价值链相关的所有提供商和服务的存储库。这使得云经纪人能够在必要时更改云配置(由于流程演进)。我们目前正在开发一个框架/语言,用于描述不同的云服务20。
根据图3,云服务代理在业务流程生命周期中完成:
- 在首次使用流程模型时,对服务的发现与绑定。
- 从变更的角度考虑业务流程。
- 源于非显式变更。
- 在服务绑定端响应这些变更20。
资源从数据中心进行存储和利用。每个资源均由其集中式提供商管理,这些提供商负责控制点发生的所有活动和操作。一旦用户提出请求或对访问服务的需求设定优先级,服务提供商将联系商业智能界面,并通过网关根据需要处理资源利用¹⁹。必须在规定的时间内处理请求,从而实现高效响应时间管理。因此,云服务代理和服务提供商通常是资源请求过程中的积极参与者,他们更加注重向用户和BI解决方案客户交付正确的资源¹⁹。
3. 商业智能驱动因素与云集成
商业智能的成功部署依赖于多个驱动因素,这些因素在云计算环境中显得尤为重要。本文涵盖了若干关键的商业智能驱动因素(Business Intelligence chauffeurs),包括数据整合能力、实时分析、可扩展性、安全性以及成本效益。通过将这些驱动因素与云服务模型相结合,组织能够更灵活地应对市场变化,并提升决策效率。
3.1 数据整合与并行处理
商业智能系统需要从多个异构数据源中提取、转换和加载(ETL)数据。云计算提供的分布式架构支持大规模并行处理,显著提升了ETL作业的执行速度。此外,云环境中的虚拟化技术和容器编排(如Kubernetes)进一步增强了资源调度的灵活性,使BI系统能够在高负载期间自动扩容。
3.2 实时分析与响应时间优化
响应时间是衡量BI系统性能的核心指标之一。在云环境下,借助内存计算引擎(如Apache Spark)和流处理框架(如Apache Kafka),企业可以实现近实时的数据分析。这种能力对于金融交易监控、供应链预警和客户行为分析等应用场景至关重要。
3.3 成本模型与经济可行性分析
尽管云服务降低了前期资本支出(CapEx),但持续的运营支出(OpEx)仍需谨慎管理。本文探讨了两种常用的经济评估方法:
-
投资回报率(ROI) :用于衡量BI项目带来的收益与其总成本之间的比率。公式为:
$$
\text{ROI} = \frac{\text{净收益}}{\text{总成本}} \times 100\%
$$ -
回收期(Payback Period) :指项目累计现金流达到零所需的时间,反映资金回笼速度。
这些数学工具帮助企业在部署云BI解决方案时做出更具前瞻性的财务决策。
4. 云工具在商业智能中的应用
商业智能的概念可通过多种云仿真与分析工具有效实现,主要包括:
- CloudSim :一个开源框架,用于模拟云计算环境,支持对资源调度策略、能耗模型和SLA合规性进行建模与测试。
- CloudAnalyst :基于CloudSim构建,专为大规模用户场景下的性能评估设计,可用于预测BI服务在不同负载条件下的响应时间和吞吐量。
- Aneka :提供多租户支持和QoS保障机制,适用于构建定制化的BI服务平台。
这些工具不仅支持不同类型的云模型(公有云、私有云、混合云),还能通过BI方法的能力不断优化结果输出。
5. 结论与展望
本研究系统分析了云计算与商业智能集成过程中面临的关键挑战,包括服务质量控制、数据安全、成本波动和响应延迟等问题。同时,揭示了影响云BI采纳的主要不确定性因素,特别是在跨组织协作和法规遵从方面。通过引入数学分析手段(如ROI和回收期),为企业评估云BI项目的经济效益提供了量化依据。
未来的研究方向可聚焦于智能化的资源调度算法、基于AI的异常检测机制,以及联邦学习在保护隐私前提下的跨域数据分析。随着CloudSim、CloudAnalyst和Aneka等工具的不断发展,云环境下的商业智能将具备更强的适应性和可扩展性,从而推动企业数字化转型迈向新阶段。
32

被折叠的 条评论
为什么被折叠?



