求子数组问题

子数组问题分为三类:

1:连续子数组

2:非连续子数组

3:可连续也可以不连续

这三类问题的解决办法一般都是循环或者动态规划,尝试了dfs算法,结果把自己给绕进去了!

 

一:最大升序问题(属于第三类)

参考:https://www.cnblogs.com/lerongwei/p/4890633.html

1:动态规划解法:

利用动态规划来做,假设数组为1, -1, 2, -3, 4, -5, 6, -7。我们定义LIS[N]数组,其中LIS[i]用来表示以array[i]为最后一个元素的最长递增子序列。
使用i来表示当前遍历的位置:
当i = 0 时,显然,最长的递增序列为(1),则序列长度为1。则LIS[0] = 1
当i = 1 时,由于-1 < 1,因此,必须丢弃第一个值,然后重新建立序列。当前的递增子序列为(-1),长度为1。则LIS[1] = 1
当i = 2 时,由于2 > 1,2 > -1。因此,最长的递增子序列为(1, 2),(-1, 2),长度为2。则LIS[2] = 2。
当i = 3 时,由于-3 < 1, -1, 2。因此,必须丢掉前面的元素,重建建立序列。当前的递增子序列为(-3),长度为1。则LIS[3] = 1。
依次类推之后,可以得出如下结论。
LIS[i] = max{1, LIS[k] + 1}, array[i] >array[k], for any k < i
最后,我们取max{Lis[i]}。

#include<stdio.h>
#include<iostream>
using namespace std;
void FindLongestAscSequence( int *input,int size){
    int *list = new int[size];// 用来存储以第i个元素结尾的最长递增子序列
    int *sum  = new int[size]; // 用来存储以第i个元素结尾的最长递增子序列的和
    int MaxLen = 1;
    int maxsum =0;
    int k = 0;
    for (int i = 0; i < size; i++){
         list[i] = 1 ;
         sum[i] = input[i]; //初始为
        for ( int j = 0; j < i; j++){
            if ((input[i] > input[j]) && (list[j] + 1 > list[i]) )
                   list[i] = list[j] + 1;
            if ((input[i] > input[j]) && (sum[j] + input[i] > sum[i]) )
                   sum[i] = sum[j] + input[i];
                   
        }
        if (MaxLen < list[i]){
            MaxLen = list[i];
        }
        if (maxsum < sum[i])
        {
            maxsum = sum[i];
        }
    }
    cout<<MaxLen << ' '<< maxsum << endl;
}

int main(){
    int test1[] = {5,1,3,4,9,7,6,8};
    int test2[] = {1,2,3,4,5,6};
    int test3[] = {6,5,4,3,2,1};
    FindLongestAscSequence(test1,8);
    FindLongestAscSequence(test2,6);
    FindLongestAscSequence(test3,6);
    return 0;
}

这个通用解法可以实现求最大子数组的长度和求和问题。网上还有一种循环的解法但是没有回溯,得到的结果并不是我我们想要的额!

#include<stdio.h>
#include<iostream>
using namespace std;
void FindGreatestAddOfSubArrey(int *input,int size){
    int *result = new int[size];
    int *pre = new int[size];
    int k,MaxLen = 0;
    for (int len = 0; len < size; len++){
         int temp = input[len];
         int cnt = 0;
         pre[0] = input[len];
         for(int end = len + 1; end < size; end++){
            if (input[end] > temp){
                temp = input[end];
                pre[++cnt] = temp;
            }
        }
        if (cnt >= MaxLen){
            k = 0;
            MaxLen = cnt;
            while(k <= cnt){
                result[k] = pre[k];
                k++;
            }
        }
    }
    cout<<MaxLen+1<<endl;
    for(int i = 0;i < k; i++)
        cout<<result[i]<<" ";
    cout<<endl;
}

int main(){
    int test1[] = {5,1,3,4,9,7,6,8};
    int test2[] = {1,2,3,4,5,6};
    int test3[] = {6,5,4,3,2,1};
    FindGreatestAddOfSubArrey(test1,8);
    FindGreatestAddOfSubArrey(test2,6);
    FindGreatestAddOfSubArrey(test3,6);
    return 0;
}

 

二:数组非连续子序列的最大和

动态规划:找递推关系式!

从《编程之美》一题中得到启发,我们是不是也可以用动态规划的方法来解这道题呢?假设从原数组a第i位开始的最大不连续子数组和为m[ i ],那么它的值有两种可能,一种是当前元素a[ i ]与隔一位上子问题解m[ i+2 ]之和(由不连续性质决定),另一种是不包含当前元素而直接等于前一位上子问题解m[ i+1 ],那么我们可以写出递推公式为:m[ i ] = max(a[ i ] + m[ i+2 ], m[ i+1 ])。
等等,也许你要说,好像这个递推式有漏洞啊,因为前一位上的解m[ i+1 ]本身就有可能是包含或不包含a[ i+1 ],假如m[ i+1 ]不包含a[ i+1 ],那么岂不是还要考虑a[ i ]+m[ i+1 ]这种可能性呢?
这个递推式真的经不起推敲吗?我们不妨重新整理一下思路:由于原数组上每一元素都有取与不取两种可能,那么也就对应有包含和不包含该元素的两个子数组的最大和。对于原数组a中第i位上的元素,假设包含a[ i ]元素的子数组最大和为s[ i ],而不包含元素a[ i ]的子数组最大和为ns[ i ],因此所要求的不连续子数组最大和m[ i ] = max(s[ i ], ns[ i ])。那么根据题意我们可以整理出递推关系如下:
s[ i ] = max(a[ i ] + ns[ i+1 ], a[ i ] + m[ i+2 ])
ns[ i ] = m[ i+1 ]
m[ i ] = max(a[ i ] + ns[ i+1 ], a[ i ] + m[ i+2 ], m[ i+1 ])
有趣的地方在于ns[ i ] = m[ i+1 ]这一项上,根据它我们可以得到ns[ i+1 ] = m(i+2),也就是说假如m[ i+1 ]不包含a[ i+1 ]的话,那么它一定等于m[ i+2 ],所以a[ i ]+ns[ i+1 ]等价于a[ i ] + m[ i+2 ],递推式m[ i ] = max(a[ i ] + m[ i+2 ], m[ i+1 ])是正确的!
从《编程之美》给出的解法中得到启发,我们也只需要使用两个变量来记录m[ i+2 ]和m[ i+1 ]的值就行了,而且同样只需要O(N)的复杂度就可以解这道题,代码如下:


    

#include<stdio.h>
#include<iostream>
using namespace std;
static int max(int a,int b)
{
    return a > b? a: b;
}

    int maxSubSum(int a[] , const int len)
    {

       a[1] = max(a[1],a[0]);

       for (int i = 2; i < len; i++) {

           a[i]= max( max(a[i],a[i-1]),a[i-2]+a[i]);

        }
        return a[len-1];
    }
    
    //编程之美的解法
    int maxsum(int* a, int n)
    {
        int m2 = 0;
        int m1 = a[ n-1 ];
        for(int i = n - 2; i >= 0; i--)
        {
        if(m2 < 0) m2 = 0; //处理最后一位为负数或全为负数的情况
        int tmp = m1;
        m1 = max(a[ i ] + m2, m1);
        m2 = tmp;
        }
        return m1;
    }
            
    
     int main( )
     {

        int a[]= {2,-3,3,50};

        int b[]= {-2,-3,3,50,1,-1,100};

        int result_a = maxSubSum(a,4);

        int result_b = maxsum(b,7);

        cout << result_a << endl;
        cout << result_b << endl;
        return 0;

      }
     

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值