旋转卡壳——凸多边形直径

出处:http://blog.csdn.net/acmaker/article/details/3177045

凸多边形直径

我们将一个多边形上任意两点间的距离的最大值定义为多边形的直径。 确定这个直径的点对数可能多于一对。 事实上, 对于拥有  n  个顶点的多边形, 就可能有  n  对“直径点对”存在。 

 

一个多边形直径的简单例子如左图所示。 直径点对在图中显示为被平行线穿过的黑点 (红色的一对平行线). 直径用浅蓝色高亮显示。


显然, 确定一个凸多边形  P  直径的点对不可能在多边形  P  内部。 故搜索应该在边界上进行。 事实上, 由于直径是由多边形的平行切线的最远距离决定的, 所以我们只需要查询 对踵点 。 Shamos (1978) 提供了一个 O(n)  时间复杂度计算n点凸包对踵点对的算法。直径通过遍历顶点列表, 得到最大距离即可。 如下是1985年发表于 Preparata 和 Shamos 文章中的 Shamos 算法的伪代码。 
输入是一个多边形  P ={ p1 ,..., pn }. 

begin
     p0:=pn;
     q:=NEXT[p];
     while (Area(p,NEXT[p],NEXT[q]) > Area(p,NEXT[p],q)) do
          q:=NEXT[q];
          q0:=q;
          while (q != p0) do
               begin
                    p:=NEXT[p];
                    Print(p,q);
                    while (Area(p,NEXT[p],NEXT[q]) > Area(p,NEXT[p],q) do
                         begin
                              q:=NEXT[q];
                              if ((p,q) != (q0,p0)) then Print(p,q)
                              else return
                         end;
                    if (Area(p,NEXT[p],NEXT[q]) = Area(p,NEXT[p],q)) then
                      if ((p,q) != (q0,p0)) then Print(p,NEXT[q])
                      else Print(NEXT[p],q)
               end
end.

此处  Print(p,q)  表示将  (p,q)  作为一个对踵点对输出,  Area(p,q,r)  表示三角形  pqr  的有向面积。 
虽然直观上看这个过程与常规旋转卡壳算法不同, 但他们在本质上是相同的, 并且避免了所有角度的计算。 

如下是一个更直观的算法:
  1. 计算多边形 y 方向上的端点。 我们称之为 ymin 和 ymax 。
  2. 通过 ymin 和 ymax 构造两条水平切线。 由于他们已经是一对对踵点, 计算他们之间的距离并维护为一个当前最大值。
  3. 同时旋转两条线直到其中一条与多边形的一条边重合。
  4. 一个新的对踵点对此时产生。 计算新的距离, 并和当前最大值比较, 大于当前最大值则更新。
  5. 重复步骤3和步骤4的过程直到再次产生对踵点对 (ymin,ymax) 。
  6. 输出确定最大直径的对踵点对。
至此, 上述的过程(伪代码中的)显得十分有用, 我们可以从对踵点对中得到其他的信息, 如多边形的 宽度
  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
以下是Java实现的动态规划算法,用于凸多边形的最优三角剖分: ```java public class Triangulation { public static double minWeightTriangulation(double[] vertices) { int n = vertices.length / 2; double[][] dp = new double[n][n]; for (int len = 2; len < n; len++) { for (int i = 0; i < n - len; i++) { int j = i + len; dp[i][j] = Double.MAX_VALUE; for (int k = i + 1; k < j; k++) { double weight = dp[i][k] + dp[k][j] + triangleArea(vertices, i, k, j); if (weight < dp[i][j]) { dp[i][j] = weight; } } } } return dp[0][n - 1]; } private static double triangleArea(double[] vertices, int i, int j, int k) { double x1 = vertices[2 * i]; double y1 = vertices[2 * i + 1]; double x2 = vertices[2 * j]; double y2 = vertices[2 * j + 1]; double x3 = vertices[2 * k]; double y3 = vertices[2 * k + 1]; return Math.abs((x1 * (y2 - y3) + x2 * (y3 - y1) + x3 * (y1 - y2)) / 2.0); } } ``` 这个算法中,`vertices`数组包含了多边形的所有顶点坐标,按照顺序存储,每个顶点有两个坐标值:x和y。`minWeightTriangulation`方法返回最优三角剖分的权重和,即所有三角形的面积之和。 算法的核心是一个二维数组`dp`,其中`dp[i][j]`表示从第i个顶点到第j个顶点的最优三角剖分的权重和。通过动态规划的方式,逐步计算出所有子问题的最优解,最终得到全局最优解。 具体来说,算法的外层循环枚举子问题的长度,从2开始,一直到n-1。内层循环枚举子问题的起点i和终点j,计算出所有可能的三角剖分方式,并选择其中权重和最小的一个。这个过程的时间复杂度是O(n^3),可以通过一些优化来降低复杂度。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值