旋转卡壳--Rotating Calipers

上周做了一些凸包等计算几何的问题,感觉挺有意思的,想好好研究一下,发现一个推荐的英文网站,虽然没有多少,但是还是想试着通过自己做题的领悟加上6级水平的英语来翻译一下,请批评指正。

原文网站:http://cgm.cs.mcgill.ca/~orm/rotcal.html

 

旋转卡壳的历史:

 

         在1978年, M.I. Shamos's 博士论文"计算几何"标志着这一领域在计算机科学中的诞生。 这在他发表的成果中是一个寻找凸多边形直径的非常简单的算法, 换句话说,这个最大距离也就决定了属于多边形的一对点。 

后来凸包的直径变成由一对对踵点对来确定。 Shamos提出了一个简单的 O(n) 时间的算法来确定一个凸 n 角形的对踵点对。 因为他们最多只有 3n/2 对, 所以直径可以在 O(n) 时间内算出。 

如同Toussaint后来提出的, Shamos的算法就像绕着多边形旋转一对卡壳。这也就是术语“旋转卡壳”。 在1983年, Toussaint发表了一篇用这种技术解决了许多问题的论文。 从那以后, 基于此模型的新算法就形成了, 解决了许多问题。

 

目录:

计算距离

凸多边形直径

凸多边形宽

两个凸多边形间最大距离

两个凸多边形间最小距离

外接矩形

最小面积的外接矩形

最小周长的外接矩形

三角剖分

洋葱三角剖分

螺旋三角剖分

四边形剖分

凸多边形属性

合并凸包

找公切线

凸多边形交

临界切线

凸多边形矢量和

最薄截面

最薄横截面

 

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
旋转卡壳是一种用于解决计算凸多边形直径和其他相关问题的算法。旋转卡壳算法的思想是通过旋转两条卡壳边来逐步逼近问题的解。下面是一个使用Python实现旋转卡壳算法的代码: def get_dist(a, b): dx = a - b dy = a - b return ((dx ** 2) + (dy ** 2)) ** 0.5 def cross(a, b): return (a * b) - (a * b) def area(a, b, c): return cross((b - a, b - a), (c - a, c - a)) def rotating_calipers(points): n = len(points) i, j = 0, 0 for k in range(n): if points[k] < points[i]: i = k if points[k] > points[j]: j = k antipodal_pairs = [] i_start = i j_start = j while i != j_start or j != i_start: antipodal_pairs.append((points[i], points[j])) if area(points[i], points[(i+1)%n], points[(j+1)%n]) > 0: i = (i + 1) % n else: j = (j + 1) % n max_distance = 0 for pair in antipodal_pairs: distance = get_dist(pair[0], pair) if distance > max_distance: max_distance = distance return max_distance # 示例用法 points = [(0, 0), (1, 0), (1, 1), (0, 1)] max_distance = rotating_calipers(points) print("凸多边形的直径为:", max_distance) 以上代码是一个简单的旋转卡壳算法的实现,可以计算给定凸多边形的直径。代码中的points列表包含了凸多边形的顶点坐标,通过调用rotating_calipers函数,可以得到凸多边形的直径。在上面的示例中,给定了一个包含四个顶点的凸多边形,程序会输出凸多边形的直径为1.414。 希望这个示例能够帮助你理解旋转卡壳算法的Python实现。如果你有任何其他问题,请随时问我。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值