《数学基础》-1.线性代数-1.4.矩阵的特征值和特征向量

1.4.矩阵的特征值和特征向量

1.4.1.向量的内积和范数

内积也称为点积,也可以表示为<x,y>

柯西不等式:

可以令z=x-λy,利用[z,z]>=0,求出关于λ的二元一次方程,然后利用证明

线性无关定义:

定理1证明:

二维或者三维空间的规范正交基有哪些?

如何求出这些系数

1.4.2.方阵的特征值与特征向量

如何求解特征值与特征向量?

展开行列式后为关于λ的n次式,利用韦达定理可证上式

为何只解出两个特征向量?

原因是特征值出现重根

这里可以先把设为求解?

然后再求,即A的伴随矩阵

1.4.3.相似矩阵

1.4.4.对称矩阵的对角化

向量的正交化参照p114施密特规范正交化

1.4.5.二次型和矩阵的正定性

 

 

©️2020 CSDN 皮肤主题: 深蓝海洋 设计师:CSDN官方博客 返回首页