Pollard的rho启发式因子分解算法 & [CodeVS 4939] 欧拉函数:Miller-Rabin + Pollard-rho 质因数分解

本文介绍了Pollard的rho启发式因子分解算法,探讨了算法的复杂性和有效性,包括Brent判圈算法与Floyd判圈算法的比较。同时,结合CodeVS 4939题目的欧拉函数问题,讨论了如何结合Miller-Rabin和Pollard-rho算法进行质因数分解,以及在解决实际问题中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Pollard的rho启发式因子分解算法用于给出整数的一个因子。在一定的合理假设下,如果n有一个因子p,可在 O(p) 的期望时间内可找出n的一个因子p。

关于其复杂度,Wikipedia是这样叙述的:

If the pseudo random number x = g(x) occurring in the Pollard ρ algorithm were an actual random number, it would follow that success would be achieved half the time, by the Birthday paradox in O(p^(1/2)) ≤ O (n^(1/4)) iterations. It is believed that the same analysis applies as well to the actual rho algorithm, but this is a heuristic claim, and rigorous analysis of the algorithm remains open.

以下绝大部分来自《算法导论》。

Pollard-rho算法的核心是用递推式 xi+1=(x2i+c)modn 生成一个最终会进入循环的“随机”序列(表示成有向图,看起来就像ρ,这就是算法名字的由来)。虽然只显式地生成了一个序列,实际上同时生成了许多形如ρ的序列(后面将会推证);只要两个指针都进入某个ρ的圈圈里,把它们所指向的值作差,取绝对值,和n求gcd,就能得到n的一个因子。

伪代码如下:

Pollard-Rho(n, c)
    i = 1
    k = 2
    y = x = a random integer in [0, n)
    d = 1
    while d == 1
        i = i+1
        x = (x*x+c) mod n
        if x == y
            return n
        d = gcd(n, abs(x-y))
        if i == k
            k = k*2
            y = x
    return d

它的正确性是显然的。算法可能会失败地返回一个平凡因子n,也可能成功地返回一个n的某个非平凡因子。

xi+1=(x2i+c)modn 的循环大小为C,循环的第一项是 xt ,进入循环后的某一时刻,k会被赋予一个不小于C的值,此时的x被保存为y,再转一圈,y固定不动,x会回到y,算法以失败终止。

必有2的某次幂落在区间[t, 2t]内,因此在不超过第2t步,循环内的某个值将被保存。此时的k可能小于C,无妨,因为必有2的某次幂落在区间[C, 2C]内,2C步之内,有k不小于C成立。于是,至多走(2*min(t, C)+C)步,算法终止。这个算法叫Brent判圈算法(Brent’s cycle finding method),与Floyd判圈算法均为线性,但常数优于后者(至少3C次计算后继结点)。根据Wikipedia,Pollard的原始版本采用Floyd判圈算法,后来由Richard Brant用自己新发明的判圈算法加以改进。

设n有一个因子p,其实我们同时在计算 xi=ximodp ,并且递推式具有相同的形式:

xi+1
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值