利用logistic函数的假设函数得到的值如果大于或等于0.5,我们就预测y=1。当我们得到的值小于0.5我们就预测y=0。观察sigmoid函数发现,只要z大于等于0,g(z)的值就大于等于0.5。z小于0时,g(z)的值就小于0.5。
举例来说,当g(z)的值大于等于1时候,z的值大于等于0,即θT*x>=0,假设θTx=θ0+θ1x1+θ2x2,当y=1时应该让θ0+θ1x1+θ2*x2>=0带入θ的实际值得到-3+x1+x2>=0,利用线性规划的知识x1+x2>=3表示直线x1+x2=3这条直线右上侧的部分。x1+x2=3这条线的左下部分表示预测值y=0,我们称x1+x2=3这条直线为决策界限。决策边界是假设函数的一个属性,它不是数据集的一个属性。不同的高阶多项式特征能得到不同的决策边界。
吴恩达机器学习6-3决策界限学习收获
最新推荐文章于 2022-07-20 15:50:03 发布