Problem Description
Dr.Kong设计的机器人卡多掌握了加减法运算以后,最近又学会了一些简单的函数求值,比如,它知道函数min(20,23)的值是20 ,add(10,98) 的值是108等等。经过训练,Dr.Kong设计的机器人卡多甚至会计算一种嵌套的更复杂的表达式。
假设表达式可以简单定义为:
1. 一个正的十进制数 x 是一个表达式。
2. 如果 x 和 y 是 表达式,则 函数min(x,y )也是表达式,其值为x,y 中的最小数。
3. 如果 x 和 y 是 表达式,则 函数max(x,y )也是表达式,其值为x,y 中的最大数。
4.如果 x 和 y 是 表达式,则 函数add(x,y )也是表达式,其值为x,y 之和。
例如, 表达式 max(add(1,2),7) 的值为 7。
请你编写程序,对于给定的一组表达式,帮助 Dr.Kong 算出正确答案,以便校对卡多计算的正误。
假设表达式可以简单定义为:
1. 一个正的十进制数 x 是一个表达式。
2. 如果 x 和 y 是 表达式,则 函数min(x,y )也是表达式,其值为x,y 中的最小数。
3. 如果 x 和 y 是 表达式,则 函数max(x,y )也是表达式,其值为x,y 中的最大数。
4.如果 x 和 y 是 表达式,则 函数add(x,y )也是表达式,其值为x,y 之和。
例如, 表达式 max(add(1,2),7) 的值为 7。
请你编写程序,对于给定的一组表达式,帮助 Dr.Kong 算出正确答案,以便校对卡多计算的正误。
Input
第一行:N表示要计算的表达式个数 (1<=N<=10)
接下来有N行,每行是一个字符串,表示待求值的表达式
(表达式中不会有多余的空格,每行不超过300个字符,表达式中出现的十进制数都不超过1000。)
接下来有N行,每行是一个字符串,表示待求值的表达式
(表达式中不会有多余的空格,每行不超过300个字符,表达式中出现的十进制数都不超过1000。)
Output
输出有N行,每一行对应一个表达式的值。
Sample Input
3 add(1,2) max(1,999) add(min(1,1000),add(100,99))
Sample Output
3 999 200
#include<iostream> #include<string> using namespace std; int main() { int n, num[300], i, k, top, x, flag, t; // num[300] 存储数据 char str[310], a[300]; // a[300] 存储操作运算符 while(cin >> n) { while(n--) { cin >> str; i = 0; t = strlen(str); k = top = x = flag = 0; while(i < t) { x = 0; if(str[i] == 'a') { a[top++] = 'a'; i += 3; } else if(str[i] == 'm') { if(str[i + 2] == 'x') // max { a[top++] = 'x'; i += 3; } else { a[top++] = 'n'; // min i += 3; } } if(str[i] == '(' || str[i] == ',') i++; while(str[i] >= '0' && str[i] <= '9') // 读取数据 { x = x * 10 + str[i++] - '0'; flag = 1; } if(flag) // 判断循环一次是否读取了数据 { num[k++] = x; // 存储数据 flag = 0; } if(str[i] == ')') // 执行操作运算符 { if(a[top - 1] == 'a') x = num[k - 1] + num[k - 2]; // 和 else if(a[top - 1] == 'x') x = num[k - 1] > num[k - 2] ? num[k - 1] : num[k - 2]; // 最大值 else x = num[k - 1] < num[k - 2] ? num[k - 1] : num[k - 2]; // 最小值 k = k - 2; num[k++] = x; top--; i++; } } cout << num[0] << endl; } } return 0; }