暑假训练12---阶乘计算(高精度处理)

[蓝桥杯][基础练习VIP]阶乘计算

题目描述
输入一个正整数n,输出n!的值。

其中n!=123*…*n。

算法描述

n!可能很大,而计算机能表示的整数范围有限,需要使用高精度计算的方法。使用一个数组A来表示一个大整数a,A[0]表示a的个位,A[1]表示a的十位,依次类推。

将a乘以一个整数k变为将数组A的每一个元素都乘以k,请注意处理相应的进位。

首先将a设为1,然后乘2,乘3,当乘到n时,即得到了n!的值。
输入
输入包含一个正整数n,n< =1000。
输出
输出n!的准确值。
样例输入
10
样例输出
3628800

无捷径,全靠板子

// 阶乘计算 --- 相当于就是高精度乘法的变形
#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;
int num1[500005];
int num2[10];
int num3[500005];
int n;
void BT(int k)
{
	memset(num2,0,sizeof(num2));
	
	int t =0;
	while(k)
	{
		num2[++t] = (k%10);
		k/=10;
	}
	num2[0] = t; //保存个数 
}
//乘法板子    0位都采取保存位数的方式 
void mul()
{
	memset(num3,0,sizeof(num3));
	for(int i = 1;i<=num1[0];i++)
	 for(int j = 1;j<=num2[0];j++)
	 {
	 	int u = num1[i]*num2[j]; 	
	 	num3[i+j-1] +=(u);
	 	num3[i+j] +=(num3[i+j-1]/10);
	 	num3[i+j-1]%=10;
	 	
	 }
	int k = num1[0]+num2[0];
	while(num3[k]==0&&k>0) k--;
    num3[0] = k;
}
int main()
{
    memset(num1,0,sizeof(num1));
	cin>>n;
	num1[1] = 1;   //表示第一个个位是0; 
	num1[0] = 1;   //表示只有一位; 
	for(int i =2;i<=n;i++)
	{
		BT(i);   //变换i 
		mul();   //乘法 
		
		memset(num1,0,sizeof(num1));
		
		for(int i = 0;i<=num3[0];i++)
		{
			num1[i] = num3[i];
		} 
	}
	for(int i = num1[0];i>=1;i--)
	cout<<num1[i];
	return 0;
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值