自协方差函数,自相关函数,协方差矩阵

1.自相关函数(Autocorrelation function)

自相关函数是描述随机信号X(t)在任意两个不同时刻t1t2,的取值之间的相关程度


2. 自协方差函数(Autocovariance function)

自协方差函数是描述随机信号X(t)在任意两个不同时刻t1t2,的取值之间的二阶混合中心矩,用来描述X(t)在两个时刻取值的起伏变化(相对与均值)的相关程度,也称为中心化的自相关函数。


时, 

显然,自协方差函数和自相关函数描述的特性基本相同。


3. 协方差矩阵


记住,XY是一个列向量,它表示了每种情况下每个样本可能出现的数。比如给定


由于数据是二维的,所以协方差矩阵是一个2*2的矩阵,矩阵的每个元素为:元素(i,j) = (第 i 维所有元素 - 第 i 维的均值) * (第 j 维所有元素 - 第 j 维的均值) 。

其中「*」代表向量内积符号,即两个向量求内积,对应元素相乘之后再累加。

我们首先列出第一维:D1: (1,3,4,5) 均值:3.25

D2: (2,6,2,2) 均值:3

下面计算协方差矩阵第(1,2)个元素:

元素(1,2)=(1-3.25,3-3.25,4-3.25,5-3.25)*(2-3,6-3,2-3,2-3)=-1

类似的,我们可以把2*2个元素都计算出来:


这个题目的最终结果就是:

用matlab计算这个例子

z=[1,2;3,6;4,2;5,2]

cov(z)

ans =

    2.9167   -0.3333

   -0.3333    4.0000

可以看出,matlab计算协方差过程中还将元素统一缩小了3倍。所以,协方差的matlab计算公式为:

    协方差(i,j)=(第i列所有元素-第i列均值)*(第j列所有元素-第j列均值)/(样本数-1)



参考:

[1] http://en.wikipedia.org/wiki/Covariance_matrix

[2] http://www.cnblogs.com/cvlabs/archive/2010/05/08/1730319.html

[3]http://blog.csdn.net/ybdesire/article/details/6270328

[4] http://202.117.122.42:9001/xhxt/xhyxt/xuexi/chart9/c_9_2_3_001.htm


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值