1.自相关函数(Autocorrelation function)
自相关函数是描述随机信号X(t)在任意两个不同时刻t1,t2,的取值之间的相关程度
2. 自协方差函数(Autocovariance function)
自协方差函数是描述随机信号X(t)在任意两个不同时刻t1,t2,的取值之间的二阶混合中心矩,用来描述X(t)在两个时刻取值的起伏变化(相对与均值)的相关程度,也称为中心化的自相关函数。
当时,
显然,自协方差函数和自相关函数描述的特性基本相同。
3. 协方差矩阵
记住,X、Y是一个列向量,它表示了每种情况下每个样本可能出现的数。比如给定
由于数据是二维的,所以协方差矩阵是一个2*2的矩阵,矩阵的每个元素为:元素(i,j) = (第 i 维所有元素 - 第 i 维的均值) * (第 j 维所有元素 - 第 j 维的均值) 。
其中「*」代表向量内积符号,即两个向量求内积,对应元素相乘之后再累加。
我们首先列出第一维:D1: (1,3,4,5) 均值:3.25
D2: (2,6,2,2) 均值:3
下面计算协方差矩阵第(1,2)个元素:
元素(1,2)=(1-3.25,3-3.25,4-3.25,5-3.25)*(2-3,6-3,2-3,2-3)=-1
类似的,我们可以把2*2个元素都计算出来:
这个题目的最终结果就是:
用matlab计算这个例子
z=[1,2;3,6;4,2;5,2]
cov(z)
ans =
2.9167 -0.3333
-0.3333 4.0000
可以看出,matlab计算协方差过程中还将元素统一缩小了3倍。所以,协方差的matlab计算公式为:
协方差(i,j)=(第i列所有元素-第i列均值)*(第j列所有元素-第j列均值)/(样本数-1)
参考:
[1] http://en.wikipedia.org/wiki/Covariance_matrix
[2] http://www.cnblogs.com/cvlabs/archive/2010/05/08/1730319.html
[3]http://blog.csdn.net/ybdesire/article/details/6270328
[4] http://202.117.122.42:9001/xhxt/xhyxt/xuexi/chart9/c_9_2_3_001.htm