线性代数mooc课(3.2)

先说说目前我对矩阵的理解,
1、一开始是通过方程组导出矩阵的概念的,每一行都表示一个线性方程。齐次方程组A的解可以代表全部和A有关的非齐次方程组的解,因为最多只差一个平移的向量而已。
2、通过适当的变形,可以得到向量的观点。按列看方程组,每列都是一个列向量,解方程就是找一组系数使得列向量的线性组合能得到目标向量。
3、线性变换的观点: 每一个矩阵都表示一个变换,Ax  相当于对向量x做了某些羞羞的事情,把x变成了另一个向量b。 具体怎么变要看A。
可能是把x变成更高维/更低维的向量;拉伸旋转翻转,同一个向量空间但是换一组基去表示x。

这里观点2,3让我好矛盾,没法贯通起来,观点2中的x是线性组合对应的系数而已。观点3中,向量x却是被操作的对象。



同济mooc课更新太慢了,看了另一门线代课,北航的《线性代数启蒙》有点大开眼界。
先看了前2周的课,从方程组出发,介绍了矩阵和向量的观点。


学习数学解决问题要真发明真创造(仅对个人而言,因为我学的都是前人创好的了),而不是奉天承运(填鸭式的)。
线性代数的抽象在于线性变换的定义: 不仅仅是有理数无理数的运算,初高中学的线性方程组。 满足线性变换定义的东西都可能用线性代数去处理。
微分本身也是一种线性变换。

线性代数十分需要数形结合的,不过这里的形往往只能是二三维的。
例如行列式的某些性质:
1.矩阵的某一行   Ri + c*Rk,不改变行列式的值。  因为相当于三角形底不变,沿向量c*Rk平行的移动顶点,面积不变。
2. 矩阵Y的某一行可以分拆为两个向量a,b之和,det(A) = det( A ) + det(B), 其实是原矩阵面积和 = 两个拆出来的新矩阵的面积和。


里面为了引出解线性方程组的算法,用了一个数列求和的问题, An = n^k, 求Sn。  通过Sn - Sn-1 = n^k, 待定系数法构造出Sn来。
这里就引出如何解 n元线性方程组。 并且这个算法是具有普适性,也就是一解多用。

因为三角阵是好解的,也就是这种事软柿子。
那么就需要一种方法把不好解的方程组转为好解的(这种操作必须保证不改变方程组的解)。
于是引出了 矩阵的初等行变换,高斯消元法。


接下来用空间平面直线方程 引出了矩阵的向量观点。
讨论方程组的解集:
1.先看齐次线性方程组
    c1*v1 + ... + cn*vn = 0
   c = 0 是平凡解,得来全不费工夫嘛。。但是有没有非0解呢? 有的话,说明v是线性相关的。也就是高斯消元之后,有全0的行。

2、非齐次方程总是可以移项变为齐次的。Ax = b  ---->  [A b][x   -1] = 0    这样一来就变成了已解决的问题了。

3、共面的判断,高中判断三点共面要通过向量的点乘 叉积为0来判断。 现在可以用线性组合的角度来判断了。如果有非0解,就是共面的







  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值