线性代数

1、行列式

行列式的概念首先是在求解方程个数与未知量个数相同的一次方程组时提出来的(以后常把一次方程组称为线性方程组),例如对于一个二元一次方程组
红色字体

{a11x1+a12x2=b1a21x1+a22x2=b2

a11a22a12a210 时,用消元法求解,其解为:
x1=b1a22a12b2a11a22a12a21,x2=a11b2b1a21a11a22a12a21

如果记:
D=acbd

则上面的式子可以表示为:
x1=b1b2a12a22a11a21a12a22,x2=a11a21b1b2a11a21a12a22

我们把上式中的D叫做二阶行列式。

n2 个数 aij(i,j=1,2,,n) 组成的 n 阶行列式

D=a11a21an1a12a22an2a1na2nann
是一个算式。当 n=1 时,定义 D=|a11|=a11 ;当 n2 时,定义

D=a11A11+a12A12++a1nA1n=j=1na1jA1j

其中 A1j=(1)1+jM1j M1j D 中去掉第1行第j列全部元素后,按原顺序排成的 n1 阶行列式,即
M1j=a21a31an1a2j1a3j1anj1a2j+1a3j+1anj+1a2na3nann(j=1,2,,n)
并称 M1j 为元素 a1j 余子式 A1j 为元素 a1j 代数余子式

矩阵

消元法的基本思想是通过消元变形把方程组化简成容易求解的同解方程组,如对下面的线性方程组通过消元法化简

2x12x2   +6x4=22x1x2+2x3+4x4=23x1x2+4x3+4x4=35x13x2+x3+20x4=2

通过化简可以得到:
x1x2   +3x4=1   x2+2x32x4=0      x33x4=1         x4=0

数域F中 个数 aij(i=1,2,,m;j=1,2,,n) 排成m行n列,并以圆括弧(或方括弧)的数表

a11a21an1a12a22an2a1na2nann
称为数域F上的 mxn 矩阵,通常用大写字母记做 A Am×n有时也记做 A=(aij)m×n
其中 aij 称为矩阵 A 的第i j 列元素,
aijR(实数域)时, A 称为实矩阵;
aijC(复数域)时, A 称为复矩阵;
m×n个元素全部为零时,该矩阵叫做零矩阵,记做 0
m=n时,称 A n阶矩阵(或者 n 阶方阵)

内积

1、设α⃗ ={a1,a2,,an}T β⃗ ={b1,b2,,bn}TRn ,规定 α⃗  β⃗  的内积为:

(α⃗ ,β⃗ )=a1b1+a2b2++anbn

α⃗ ,β⃗  为列向量时, (α⃗ ,β⃗ )=α⃗ Tβ⃗ =β⃗ Tα⃗  ;
2、向量 α⃗  的长度 ||α⃗ ||=(α⃗ ,α⃗ )
3、向量 α⃗ ,β⃗  之间的夹角定义为:
<α⃗ ,β⃗ >=arccos(α⃗ ,β⃗ )||α⃗ ||||β⃗ ||
<script type="math/tex; mode=display" id="MathJax-Element-57"><\vec{\alpha},\vec{\beta}>=arccos\frac{(\vec{\alpha},\vec{\beta})}{||\vec{\alpha}|| ||\vec{\beta}||}</script>
4、非零向量 α⃗  β⃗  正交(或垂直)的充分必要条件是 (α⃗ ,β⃗ )=0

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值