Leveraging Large Language Models in Conversational Recommender Systems论文精读

文章探讨了如何利用大语言模型构建对话推荐系统,强调了增强推荐的互动性和解释性。重点介绍了两种方法:直接搜索与概念基础搜索,以及排名模块的改进,包括使用LLM的可解释性输出。文章还讨论了双塔模型的修改和搜索API的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


​​​​​​​大语言模型专题(15)YouTube推荐新范式——基于LLM的对话式推荐系统 - 知乎

论文核心

利用LLM构建对话推荐系统(CRS),增强推荐系统的可互动性和可解释性(传统推荐系统采用隐式指标,如点击率等)

解决问题

 连接LLM和推荐引擎的桥梁 【在Retrieve阶段连接】

模型LLM推荐引擎缺点

Generalized Dual Encoder Model(双塔模型)

输出Context文本在LLM中的编码item embedding +

KNN or ScaNN

语义空间不匹配
Direct LLM Search物品的ID或标题仅做搜索对LLM端要求高
Concept Based Search从对话中提取的关键信息或话题(概念)

KNN相似度计算

LLM概念提取可能造成文本有用信息损失
Search API Lookup查询QueryAPI调用API需要已经存在于业务中

文章的三大重点

  • Retrieve:提出四种方式
  • Ranking:分数 + 解释性文本
  • User Profile的构建和更新:记忆化 + 触发/筛选机制 + 冲突解决

Retrieve (召回阶段:100物料)

  • Direct LLM Search

 LLM直接输出要推荐的物品的ID或标题作为文本。使用搜索算法对语料库中的物品进行准确或模糊匹配,推荐引擎在这个过程中的作用仅限于进行简单的匹配操作。LLM必须学会通过其预训练和一个语料库特定的微调阶段输出这些物品的ID或标题。缺点是对LLM模型端的训练要求大

  • Concept Based Search

LLM输出一组概念(代表了从对话中提取的关键信息或话题),推荐引擎将这些概念嵌入并聚合为单一的上下文嵌入。这个上下文嵌入通过近似最近邻搜索与物品相关联。概念列表的生成是通过在LLM中学习或微调中获得的,这使得LLM能够通过自然的任务(提取对话中的关键概念)来学习语境。与第一个模型相比,这个方法更注重从对话中提取的语义概念。

  • Search API Lookup

LLM生成的是搜索查询 query,随后利用已经存在于业务中的搜索 API 来获得推荐内容

Ranking 排序

图来自:大语言模型专题(15)YouTube推荐新范式——基于LLM的对话式推荐系统 - 知乎

LLM依次推理项目与上下文的匹配程度,并为其决策生成可解释性的文本(作为副产品)

排序模块不需要在大型语料库上执行可处理的搜索,因此在可能的计算类型方面受到的约束较小。并可能在直接比较候选项目的训练过程中使用自定义排序损失

### 解决PyCharm无法加载Conda虚拟环境的方法 #### 配置设置 为了使 PyCharm 能够成功识别并使用 Conda 创建的虚拟环境,需确保 Anaconda 的路径已正确添加至系统的环境变量中[^1]。这一步骤至关重要,因为只有当 Python 解释器及其关联工具被加入 PATH 后,IDE 才能顺利找到它们。 对于 Windows 用户而言,在安装 Anaconda 时,默认情况下会询问是否将它添加到系统路径里;如果当时选择了否,则现在应该手动完成此操作。具体做法是在“高级系统设置”的“环境变量”选项内编辑 `Path` 变量,追加 Anaconda 安装目录下的 Scripts 文件夹位置。 另外,建议每次新建项目前都通过命令行先激活目标 conda env: ```bash conda activate myenvname ``` 接着再启动 IDE 进入工作区,这样有助于减少兼容性方面的问题发生概率。 #### 常见错误及修复方法 ##### 错误一:未发现任何解释器 症状表现为打开 PyCharm 新建工程向导页面找不到由 Conda 构建出来的 interpreter 列表项。此时应前往 Preferences/Settings -> Project:...->Python Interpreter 下方点击齿轮图标选择 Add...按钮来指定自定义的位置。按照提示浏览定位到对应版本 python.exe 的绝对地址即可解决问题。 ##### 错误二:权限不足导致 DLL 加载失败 有时即使指定了正确的解释器路径,仍可能遇到由于缺乏适当的操作系统级许可而引发的功能缺失现象。特别是涉及到调用某些特定类型的动态链接库 (Dynamic Link Library, .dll) 时尤为明显。因此拥有管理员身份执行相关动作显得尤为重要——无论是从终端还是图形界面触发创建新 venv 流程均如此处理能够有效规避此类隐患。 ##### 错误三:网络连接异常引起依赖下载超时 部分开发者反馈过因网速慢或者其他因素造成 pip install 操作中途断开进而影响整个项目的初始化进度条卡住的情况。对此可尝试调整镜像源加速获取速度或是离线模式预先准备好所需资源包后再继续后续步骤。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值